중학수학 즈네라지나

유형에 강하다! 응용에 강하다!

유형+응용

정답 및 해설

2.1

│ 유리수와 순화소수

1 유리수와 순환소수

🔼 개념 다지기

- **01** (1) 0.16, 유한소수 (2) 0.666…. 무한소수 (3) -0.14. 유한소수 (4) 0.41666…. 무한소수
- **02** (1) a=2, b=8, c=0.8 (2) a=5, b=100, c=0.35(3) a=2, b=100, c=0.18
- **03** 37 **04** (1) 0, $3\dot{2}$ (2) 8, $1\dot{4}\dot{1}\dot{5}$ (3) $-7.9\dot{5}\dot{2}\dot{2}$
- **05** (1) 0.5, 5 (2) 0.63, 63 (3) 0.81, 81 (4) 1.1, 1
- **06** 100, 90, $\frac{74}{45}$ **07** (1) $\frac{14}{9}$ (2) $\frac{17}{30}$ (3) $\frac{8}{33}$
- **08** (1) × (2) (3) (4) ×
- **03** $\neg . \frac{5}{3^2}$ $\vdash . \frac{1}{2 \times 5}$ $\vdash . \frac{1}{2 \times 3^2 \times 5}$ $\exists \cdot \frac{7}{3 \times 5}$ $\Box \cdot \frac{1}{2 \times 5^3}$ $\exists \cdot \frac{1}{2^2}$

따라서 유한소수로 나타낼 수 있는 것은 ㄴ, ㅁ, ㅂ의 3개이다.

- **07** (1) $1.\dot{5} = \frac{15-1}{9} = \frac{14}{9}$ (2) $0.5\dot{6} = \frac{56-5}{90} = \frac{17}{30}$ (3) $0.\dot{2}\dot{4} = \frac{24}{99} = \frac{8}{22}$
- **08** (1) 유한소수는 분모가 10의 거듭제곱인 분수꼴로 나타낼 수
 - (4) 정수가 아닌 유리수 중 $\frac{1}{2} = 0.333$ ···, $\frac{1}{6} = 0.166$ ····과 같은 수는 유한소수로 나타낼 수 없다.

유형 다지기

유형 01 유한소수와 무한소수

• 8쪽 •

01 ②

- **01-1** ③ **01-2** 2개
- **01-1** ③ 정수가 아닌 유리수는 $-3.5, \frac{7}{3}, -1.23, \frac{2}{5}$ 이다.
- **01-2** $\frac{7}{12}$, $\frac{5}{11}$, $-\frac{4}{12}$ 는 무한소수, $-\frac{7}{25}$, $\frac{3}{8}$ 은 유한소수 따라서 유한소수는 2개이다.

유형 02 분수를 유한소수로 나타내기

• 8쪽 •

02 4.022

- **02-1** 0.32 **02-2** ①. ③ **02-3** 228
- **02** $\frac{11}{500} = \frac{11}{2^2 \times 5^3} = \frac{11 \times 2}{2^2 \times 5^3 \times 2} = \frac{22}{1000} = 0.022$ 따라서 a=2, b=2, c=0.022이므로 a+b+c=4.022
- **02-1** $\frac{8}{25} = \frac{8}{5^2} = \frac{8 \times 2^2}{5^2 \times 2^2} = \frac{32}{100} = 0.32$
- **02-2** ① $\frac{3}{4} = \frac{3 \times 5^2}{2^2 \times 5^2} = \frac{75}{10^2}$ ② $\frac{16}{24} = \frac{2}{3}$
- **02-3** $\frac{9}{40} = \frac{9}{2^3 \times 5} = \frac{9 \times 5^2}{2^3 \times 5 \times 5^2} = \frac{225}{10^3}$ 이므로 a+n의 최속값은 225+3=228

유형 03 유한소수로 나타낼 수 있는 분수

• 9쪽 •

03 2. 5

03-1 5개 03-2 4개

- **03** ① $\frac{10}{56} = \frac{5}{28} = \frac{5}{2^2 \times 7}$ **>** 무한소수
 - ② $\frac{8}{40} = \frac{1}{5}$ → 유한소수 ③ $\frac{4}{22} = \frac{2}{11}$ → 무한소수
 - ④ $\frac{21}{2 \times 3^2 \times 7} = \frac{1}{2 \times 3}$ > 무한소수
 - ⑤ $\frac{55}{2^3 \times 5^2 \times 11} = \frac{1}{2^3 \times 5}$ ➡ 유한소수
- 03-1 기약분수로 나타냈을 때. 분모의 소인수가 2 또는 5뿐인 분 수를 찾으면 $\frac{9}{12} = \frac{3}{4} = \frac{3}{2^2}, \frac{9}{15} = \frac{3}{5}, \frac{9}{16} = \frac{9}{2^4},$ $\frac{9}{18} = \frac{1}{2}, \frac{9}{20} = \frac{9}{2^2 \times 5}$ 이므로 5개이다.
- **03-2** $\frac{1}{4} = \frac{6}{24}$, $\frac{5}{6} = \frac{20}{24}$

이 두 수 사이의 분수 $\frac{a}{2^4} = \frac{a}{2^3 \times 3}$ 는 유한소수로 나타낼 수 있으므로 a는 3의 배수이어야 한다.

따라서 a=9, 12, 15, 18이므로 구하는 분수는 $\frac{9}{24}$, $\frac{12}{24}$,

 $\frac{15}{24}$, $\frac{18}{24}$ 로 4개이다.

유형 **0.4** 유한소수가 되도록 하는 자연수 구하기 (1) • 9쪽 •

04 (5)

04-1 7. 9 **04-2** ④

04
$$\frac{12}{2^2 \times 5 \times x} = \frac{3}{5 \times x}$$

- ⑤ a=9일 때, $\frac{3}{5\times9}=\frac{1}{5\times3}$ 이므로 유한소수로 나타낼 수 없다.
- **04-1** $\frac{9}{2^3 \times 3 \times 5 \times x} = \frac{3}{2^3 \times 5 \times x}$ 의 분모에 2와 5 이외의 소인수 가 있으면 되므로 x=7, 9

04-2
$$3ax = 132$$
, $x = \frac{44}{a} = \frac{2^2 \times 11}{a}$

②
$$\frac{2^2 \times 11}{2^2 \times 5} = \frac{11}{5}$$
(유한소수) ④ $\frac{2^2 \times 11}{3 \times 11} = \frac{2^2}{3}$ (무한소수)

⑤
$$\frac{2^2 \times 11}{2 \times 5 \times 11} = \frac{2}{5}$$
(유한소수)

유형 05 유한소수가 되게 하는 자연수 구하기 (2) • 10쪽

05 3

05-1 99 **05-2** 7, 14, 21 **05-3** 63

- **05** $\frac{15}{72} \times x = \frac{5}{24} \times x = \frac{5}{2^3 \times 3} \times x$ 가 유한소수가 되려면 x는 3의 배수가 되어야 한다. 따라서 x의 값이 될 수 있는 가장 작은 자연수는 3이다.
- **05-1** $\frac{3 \times \square}{3^2 \times 5 \times 11} = \frac{\square}{3 \times 5 \times 11}$ 이므로 \square 안에 들어갈 수는 3×11 , 즉 33의 배수이어야 한다. 따라서 가장 큰 두 자리의 자연수는 99이다.

05-2
$$\frac{10}{112} \times A = \frac{5}{56} \times A = \frac{5}{2^3 \times 7} \times A$$
이므로

A는 7의 배수이어야 한다. 따라서 A의 값은 가장 작은 수부터 7, 14, 21이다.

05-3 $\frac{3}{28} \times a = \frac{3}{2^2 \times 7} \times a$, $\frac{7}{45} \times a = \frac{7}{3^2 \times 5} \times a$ 가 유한소수가 되려면 a는 7의 배수이면서 9의 배수이어야 한다. 따라서 a는 63의 배수이므로 구하는 두 자리의 자연수는 63이다.

유형 06 유한소수가 되도록 하는 수를 찾고 기약분수로 나타내기

• 10쪽 •

06 29

06-1 a=27, b=20

06-28

06 $\frac{a}{350} = \frac{a}{2 \times 5^2 \times 7}$ 가 유한소수이려면 기약분수로 나타냈을 때, 분모의 소인수가 2나 5뿐이어야 하므로 a는 7의 배수이어야 한다. 이때 $18 \le a \le 27$ 이므로 a = 21

$$\frac{21}{350} = \frac{3}{50}$$
이므로 $b = 50$

06-1 $\frac{a}{60} = \frac{a}{2^2 \times 3 \times 5}$ 가 유한소수가 되려면 a는 3의 배수이어야

또, 기약분수로 나타내면 $\frac{9}{b}$ 가 되므로 분자 a는 9의 배수이 어야한다

따라서 a는 3과 9의 공배수, 즉, 9의 배수이어야한다.

이때 20 < a < 35이므로 a = 27

$$\therefore \frac{a}{60} = \frac{27}{60} = \frac{9}{20}$$
이므로 $b = 20$

06-2 $\frac{a}{144} = \frac{a}{2^4 \times 3^2}$ 가 유한소수가 되려면 a는 9의 배수이어야 하다

또, 기약분수로 나타내면 $\frac{5}{b}$ 가 되므로 분자 a는 5의 배수이 어야 하다

따라서 a는 9와 5의 최소공배수인 45의 배수이므로

a=45 또는 a=90 (: a는 두 자리의 자연수)

$$a=45$$
일 때, $\frac{45}{144}=\frac{5}{16}$ $\therefore b=16$

a=90일 때, $\frac{90}{144}=\frac{5}{8}$: b=8

따라서 b의 최솟값은 8이다.

유형 07 순환소수의 표현

11쪽

07 ②, ④

07-1 ¬. □ **07-2** 3

07-3 8

- **07** ① 7.333···=7. $\dot{3}$ ③ 1.414141···=1. $\dot{4}\dot{1}$ ⑤ 3.513513···=3 $\dot{5}\dot{1}\dot{3}$
- **07-1** $\neg . \frac{7}{3} = 2.\dot{3}$ $\vdash . \frac{8}{33} = 0.\dot{2}\dot{4}$
- **07-2** $\frac{5}{37}$ =0.135135···=0. $\dot{1}3\dot{5}$ 따라서 순환마디의 개수만큼 색이 필요하므로 3가지의 색이 필요하다.
- 07-3 $\frac{4}{7} = 0.571428$ 이므로 a = 6 $\frac{2}{11} = 0.18$ 이므로 b = 2 $\therefore a + b = 8$

유형 **08** 순환소수의 소수점 아래 *n*번째 자리의 숫자 구하기 • 11쪽 •

08 4

08-1 10 **08-2** 39

- 08 11 = 1.571428이므로 순환마디의 숫자의 개수는 6개이다. 따라서 28=6×4+4이므로 (소수점 아래 28번째 자리의 숫자) =(순환마디의 4번째 숫자)=4
- **08-1** $\frac{6}{11} = 0.54$ 이므로 순환마디의 개수는 2개이다.

∴ *a*=(소수점 아래 20번째 숫자)

=(순환마디의 2번째 숫자)=4

1.06317의 순환마디의 개수는 4개이고 0은 순환마디에 포 함되지 않는다

따라서 38=1+(4×9+1)이므로

b = (소수점 아래 38번째의 숫자)

=(순화마디의 1번째 숫자)=6

a+b=4+6=10

08-2 $\frac{41}{333}$ = 0.i23이므로 순환마디의 숫자는 1, 2, 3의 3개이다. 이때 20=3×6+2이므로 순환마디는 6번이 반복되고 소수 점 아래 19번째, 20번째의 숫자는 각각 1, 2이다.

$$\therefore a_1 + a_2 + a_3 + \dots + a_{19} + a_{20} = (1+2+3) \times 6 + (1+2)$$

$$= 36 + 3 = 39$$

유형 **09** 순환소수가 되도록 하는 미지수의 값 구하기 • 12쪽 •

09 ③

09-1 7 **09-2** ②, ⑤ **09-3** 6개

- **09** $\frac{15}{2^3 \times a \times 5^2} = \frac{3}{2^3 \times a \times 5}$ 이 순환소수가 되려면 기약분수로 나타냈을 때, 분모에 2나 5 이외의 수가 있어야 한다.
 - ③ $\frac{3}{2^3 \times 9 \times 5} = \frac{1}{2^3 \times 3 \times 5}$ 이므로 순환소수로 나타낼 수 있다.
- **09-1** $\frac{12}{2^3 \times x} = \frac{3}{2 \times x}$ 가 순환소수가 되려면 기약분수로 나타냈을 때, 분모에 2나 5 이외의 수가 있어야 한다. 따라서 구하는 가장 작은 자연수는 7이다
- **09-2** $\frac{n}{840} = \frac{n}{2^3 \times 3 \times 5 \times 7}$ 이 순환소수가 되려면 기약분수로 나타냈을 때, 분모에 2나 5 이외의 수가 있어야 한다. 따라서 n은 3과 7의 공배수, 즉 21의 배수가 아니어야 하므로 n의 값이 될 수 없는 것은 ② 21, ⑤ 42이다.
- 09-3 $\frac{24}{2^2 \times 5^2 \times x} = \frac{2 \times 3}{5^2 \times x}$ 이 순환소수가 되려면 기약분수로 나타냈을 때, 분모에 2나 5 이외의 수가 있어야 한다. 따라서 x는 11, 13, 14, 17, 18, 19일 때 순환소수가 되므로 구하는 개수는 6개이다.

|참고| x가 10=2×5, 12=2²×3, 15=3×5, 16=2⁴이면 유한소수가 된다.

유형 **10** 순환소수를 분수로 나타내기 (1) • 12쪽 •

10 (4)

10-1 ¬, □ **10-2** 55

- 10 $1000x = 3104.104104\cdots$ -) $x = 3.104104\cdots$ 999x = 3101
- **10-1** \vdash $x=9.314 \rightarrow 1000x-100x$ $= x=1.7145 \rightarrow 10000x-10x$
- **10-2** \bigcirc =100, \bigcirc =90, \bigcirc =45 $\therefore \bigcirc$ - \bigcirc + \bigcirc =100-90+45=55

순환소수를 분수로 나타내기 (2)

11 (4)

11-1 ③

11-2 91

11-3 0.15

- 11 ① 0.47 $\dot{2} = \frac{472 4}{990}$
- ② 2.5 $\dot{3} = \frac{253-2}{99}$
- $31.1\dot{5}\dot{4} = \frac{1154 11}{990}$ $1.04\dot{5} = \frac{1045 104}{900}$

• 13쪽 •

- **11-1** ③ $x = \frac{1409 14}{990}$
- **11-2** $1.0\dot{2} = \frac{102 10}{90} = \frac{92}{90} = \frac{46}{45}$

따라서 a=45. b=46이므로 a+b=45+46=91

- 11-3 1.5 $\dot{7} = \frac{157 15}{90} = \frac{142}{90} = \frac{71}{45}$ ⇒ 바르게 본 분모 : 45 0.127= $\frac{127-1}{990}$ = $\frac{7}{55}$ ➡ 바르게 본 분자 : 7
 - 따라서 $A = \frac{7}{45} = 0.15$

유형 12 순환소수의 대소 관계

• 13쪽 •

12 ②. ③

- **12-1** 0.583. 0.583. 0.58 **12-2** ④
- **12-3** 2개

- **12-4** 2, 3, 4
- **12** ① $0.121212\cdots < 0.12222\cdots$ ② $1.2333\cdots > 1.232323\cdots$
 - $30.3\dot{9} = \frac{39-3}{90} = 0.4$
- ④ 0.313131····< 0.333···
- ⑤ 0.120<0.121212···
- **12-1** $0.5\dot{8} = 0.5888\cdots$
 - $0.583 = 0.58333 \cdots$
 - $0.583 = 0.5838383 \cdots$
 - 이므로 0.583<0.583<0.58
- **12-2** ① 0.31 $<\frac{31}{90}$ =0.34
 - ② $0.2444\cdots > 0.242424\cdots$ $\therefore 0.2\dot{4} > 0.\dot{2}\dot{4}$
 - $\bigcirc 31.211\dots < 1.22$
 - $40.\dot{3} = \frac{3}{9} = \frac{1}{3}$ $\therefore 0.\dot{3} < \frac{2}{3}$
 - $52.49 = \frac{249-24}{90} = \frac{225}{90} = \frac{5}{2}$

- **12-3** $0.\dot{2} = \frac{2}{9}$, $0.\dot{7} = \frac{7}{9}$ 이므로 $\frac{2}{9} < \frac{x}{45} < \frac{7}{9}$ 에서 10 < x < 35 $\frac{x}{45}$ 를 소수로 나타내었을 때 유한소수가 되어야 하므로 x는 9의 배수이어야 한다. 따라서 x는 18, 27이므로 구하는 개수는 2개이다
- **12-4** $\frac{1}{6} < \frac{a}{9} < \frac{1}{2}$ 에서 $\frac{3}{18} < \frac{2a}{18} < \frac{9}{18}$ 이므로 $\frac{3}{2} < a < \frac{9}{2}$ 따라서 조건을 만족시키는 한 자리의 자연수는 2, 3, 4이다.

유형 13 순환소수를 포함한 식의 계산

14쪽 •

13 658

- **13-1** ⑤
- **13-2** (5)
- **13-3** 8
- 13-4 $\frac{45}{9}$
- **13** $\frac{4}{9} = a \times \frac{1}{9}$ $\Rightarrow a = 4, \frac{48}{90} = b \times \frac{1}{90}$ $\Rightarrow b = 48$

$$\frac{606}{990} = c \times \frac{1}{990}$$
 에서 $c = 606$

- a+b+c=4+48+606=658
- **13-1** $0.\dot{1}3\dot{5} = \frac{135}{999} = 135 \times \frac{1}{999} = 135 \times 0.\dot{0}0\dot{1}$
- **13-2** $0.1\dot{3} = \frac{13-1}{90} = \frac{12}{90} = \frac{2}{15}$

$$x + \frac{2}{15} = \frac{4}{5}$$
 $\text{ MM } x = \frac{2}{3} = 0.6$

13-3 $\frac{106-10}{90} \times \frac{b}{a} = \frac{17-1}{90}, \frac{96}{90} \times \frac{b}{a} = \frac{16}{90}$

$$\frac{b}{a} = \frac{16}{9} \times \frac{90}{96} = \frac{5}{3}$$

- a, b는 서로소인 자연수이므로 a=3, b=5
- a+b=3+5=8
- **13-4** $1.4\dot{2} = \frac{128}{90} = \frac{64}{45}$, $2.\dot{6} = \frac{24}{9} = \frac{8}{2}$

 $\frac{64}{45} imes \frac{n}{m},\ \frac{8}{3} imes \frac{n}{m}$ 의 계산 결과가 모두 정수가 되려면

m=(64와 8의 공약수), n=(45와 3의 공배수)이어야 한다.

따라서 $\frac{n}{m}$ 의 최솟값은 $\frac{45}{2}$

유형 **14** $(순환소수) \times x = (자연수 또는 유한소수)가 되도록 하는 <math>x$ 의 값 구하기

• 15쪽 •

14 ②

14-1 18 **14-2** 3개

14 2.1 $\dot{3} = \frac{213 - 21}{90} = \frac{192}{90} = \frac{32}{15} = \frac{2^5}{3 \times 5}$

따라서 $\frac{2^5}{3\times5} \times x$ 가 유한소수가 되려면 x는 3의 배수이어 야 한다.

14-1 $1.3\dot{8} = \frac{138 - 13}{90} = \frac{125}{90} = \frac{25}{18}$

따라서 곱할 수 있는 자연수는 18의 배수이므로 가장 작은 자연수는 18이다

14-2 $2.6\dot{5}\dot{1} = \frac{2651 - 26}{990} = \frac{2625}{990} = \frac{175}{66} = \frac{175}{2 \times 3 \times 11}$

따라서 곱할 수 있는 자연수는 33의 배수이므로 두 자리의 자연수는 33, 66, 99의 3개이다.

유형 15 유리수와 소수의 관계

• 15쯔 •

15 ②

15-1 도희 **15-2** 2개

- 2 순환하지 않는 무한소수는 분수로 나타낼 수 없다.예 π=3 141592…
- **15-1** 도희 : 모든 순환소수는 분수로 나타낼 수 있으므로 유리수이다.

$$\exists \frac{9}{4}: 1.0\dot{9} = \frac{109-10}{90} = \frac{99}{90} = \frac{11}{10} = 1.1$$

15-2 ¬. 0.242424···=0.24 → 순환소수는 유리수이다
 ∟. π는 무한소수이지만 순환소수는 아니다.
 □. 유리수는 유한소수 또는 순환소수로 나타낼 수 있다.
 따라서 옳은 것은 □. □의 2개이다.

서술형 다지기

16~17쪽

- **1-1** 1단계 3², 11 2단계 5, 9, 99 3단계 198
- **1-2** 18
- 2-1 1단계 6, 6, 1, 1, 2, 5, 5, 3

2단계 3, 2, 1,5

- **2-2** 443
- **3-1** 0.05

3-2 1.32

4-1 12

4-2 8개

1-2 $\frac{a}{2 \times 3^2 \times 5^3}$ 를 소수로 나타내면 유한소수가 되므로 a는 9의

배수이다. ... 1

또한 조건에서 a는 6의 배수이기도 하므로 a는 9와 6의 최

소공배수, 즉 18의 배수이다. ...

따라서 구하는 가장 작은 자연수는 18이다.

채점 요소	배점
1 a가 9의 배수임을 알 수 있다.	2점
② a가 18의 배수임을 알 수 있다.	3점
❸ 가장 작은 자연수를 구할 수 있다.	1점
총점	6점

2-2 $\frac{1}{21}$ =0. $\dot{0}4761\dot{9}$, $\frac{1}{13}$ =0. $\dot{0}7692\dot{3}$ 으로 두 순환소수의 순환

마디는 6개씩이다.

... ①

... 🚯

50=6×8+2이므로

 $x=8\times(0+4+7+6+1+9)+(0+4)=220$

 $y=8\times(0+7+6+9+2+3)+(0+7)=223$

... 🛭

 $\therefore x+y=220+223=443$

... 🚯

채점 요소	배점
① $\frac{1}{21}$. $\frac{1}{13}$ 의 순환마디의 개수 구하기	2점
② x, y의 값 각각 구하기	2점
③ $x+y$ 의 값 구하기	1점
총점	5점

3-1 1단계

$$1.\dot{6} = \frac{16-1}{9} = \frac{15}{9} = \frac{5}{3}$$

2단겨

$$1.\dot{1}\dot{6} = \frac{116-1}{99} = \frac{115}{99}$$

3단계

선현이는 분자를 옳게 보았고 정아는 분모를 옳게 보았으므

로 처음 기약분수는 $\frac{5}{99}$

이것을 순환소수로 나타내면 0.05이다.

3-2 경민이가 잘못 본 기약분수는

$$1.1\dot{8} = \frac{118 - 11}{90} = \frac{107}{90}$$
 ... •••

기웅이가 잘못 본 기약분수는

$$1.\dot{2}\dot{0} = \frac{120-1}{99} = \frac{119}{99}$$
 ...

경민이는 분모를 옳게 보았고 기웅이는 분자를 옳게 보았으므로 처음 기약분수는 $\frac{119}{90}$ 이다.

따라서 처음 기약분수를 순화소수로 나타내면 1.32이다.

... 🚯

채점 요소	배점
❶ 경민이가 잘못 본 기약분수 구하기	2점
	2점
❸ 처음 기약분수를 순환소수로 나타내기	3점
총점	7점

4-1 1단계

$$\frac{1}{3} < 0.\dot{a} < 1, \frac{3}{9} < \frac{a}{9} < \frac{9}{9}$$

따라서 조건을 만족시키는 *a*의 값은 4, 5, 6, 7, 8이다.

2단계

$$0.\dot{2} < 0.\dot{b} < \frac{5}{9}, \frac{2}{9} < \frac{b}{9} < \frac{5}{9}$$

따라서 조건을 만족시키는 b의 값은 3.4이다.

3단계

a의 값 중 가장 큰 값은 8, b의 값 중 가장 큰 값은 4이므로 a+b의 값 중 가장 큰 값은 8+4=12

4-2 $\frac{x}{90}$ 의 분모를 소인수분해하면 $\frac{x}{90} = \frac{x}{2 \times 3^2 \times 5}$ 이므로 무한

소수가 되려면 기약분수의 분모가 2나 5 이외의 소인수를 가져야 하므로 x는 9의 배수가 아니어야 한다. ... \bullet

한편
$$0.\dot{3} = \frac{3}{9} = \frac{1}{3}, 0.\dot{4} = \frac{4}{9}$$
이므로 ... ②

$$\frac{1}{3} < \frac{x}{90} < \frac{4}{9}, \frac{30}{90} < \frac{x}{90} < \frac{40}{90}$$

따라서 부등식을 만족시키는 자연수 x는 31부터 39까지인 데 x는 9의 배수가 아니므로 주어진 조건을 만족시키는 자연수 x의 개수는 36을 제외한 8개이다. ... 3

채점 요소	배점
$lue{1}$ 무한소수가 되게 하는 x 의 조건 구하기	2점
② 순환소수를 분수로 고치기	2점
③ 조건을 만족시키는 자연수 x 의 개수 구하기	3점
총점	7점

0	생각	다지기

01 1 **02** 110 cm

03 90°

04 8

01 기약분수의 분모의 소인수가 2나 5뿐이면 유한소수 2나 5 이외의 소인수가 있으면 순환소수임을 판별할 수 있다.

$$\frac{9}{20} = \frac{9}{2^2 \times 5}$$
는 유한소수이므로 $9 \triangle 20 = 1$

$$\frac{12}{45} = \frac{4}{15} = \frac{4}{3 \times 5}$$
는 순환소수이므로 $12 \triangle 45 = -1$

$$\frac{25}{280} = \frac{5}{56} = \frac{5}{2^3 \times 7}$$
는 순환소수이므로 $25 \triangle 280 = -1$

02 90 cm의 높이에서 떨어뜨리면

(첫 번째 튀어 오르는 높이)= $90 \times \frac{1}{10} = 9$ (cm),

(두 번째 튀어 오르는 높이)= $9 \times \frac{1}{10} = 0.9 (cm)$, …

공은 튀어 올랐다가 다시 바닥으로 내려가는 과정을 반복하 므로 공이 움직인 거리의 합은

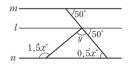
$$90 + 90 \times \frac{1}{10} \times 2 + 90 \times \frac{1}{10^2} \times 2 + 90 \times \frac{1}{10^3} \times 2 + \cdots$$

- $=90+180\times(0.1+0.01+0.001+\cdots)$
- $=90+180\times0.\dot{1}$
- $=90+180\times\frac{1}{9}$
- =90+20=110(cm)
- 03 두 직선 m, n에 평행한 직선 l을 그으면 $0.5x^\circ = 50^\circ$ (엇각)에서

 $1.5x^{\circ} = \angle y + 50^{\circ}()$ 었각)에서

$$\frac{14}{9} \times 90^{\circ} = \angle y + 50^{\circ}$$

 $\therefore \angle y = 140^{\circ} - 50^{\circ} = 90^{\circ}$



04
$$k = \frac{b}{a \times 111}$$
이고 … \ominus

$$999.\dot{9} = \frac{9999 - 999}{9} = 1000$$
이므로
$$k \times 999.\dot{9} - k = 1000k - k$$

$$= 999k$$

$$= 999 \times \frac{b}{a \times 111} \ (\because \ominus)$$

$$= \frac{3^2 \times b}{a}$$

 $\frac{b}{a \times 111}$ 는 기약분수이므로 a, b는 서로소이고 $\frac{3^2 \times b}{a}$ 가 자 연수이므로 a는 3^2 =9의 약수이어야 한다. 그런데, a = 1 < a < 5인 자연수이므로 a = 3b는 2 < b < 7인 자연수이고 a, b는 서로소이므로 *b*=4 또는 *b*=5 이때 $\frac{3^2 \times b}{a}$ 의 값은 a=3, b=5일 때 최대이므로 a+b=8

Ⅱ. 식의 계산

1 단항식의 계산

▲ 개념 다지기

01 (1)
$$7^6$$
 (2) a^3b^5 (3) x^4y^7 (4) $(-2)^{11}$ **02** 5

03 (1)
$$5^8$$
 (2) 1 (3) $\frac{1}{r}$ (4) a^4

05 (1)
$$b^3c^3$$
 (2) a^6b^{15} (3) $-\frac{a^3}{8}$ (4) x^7y^{16}

06 (1) 3, 6 (2) 3, 12 (3) 2, 6 (4) 4, 18

01 (1)
$$7^{3+2+1} = 7^6$$

(2)
$$a^3 \times b^{1+4} = a^3 b^5$$

(3)
$$x^{2+2} \times y^{3+4} = x^4 y^7$$

$$(4) (-2)^{4+2+5} = (-2)^{11}$$

02
$$(a^{\Box})^2 \times (a^3)^6 \times a^2 = a^{2 \times \Box} \times a^{18} \times a^2 = a^{2 \times \Box + 20}$$

 $a^{2 \times \Box + 20} = a^{30}$ $|A| \times 2 \times \Box + 20 = 30$

03 (1)
$$5^{10} \div 5^2 = 5^{10-2} = 5^8$$

(2)
$$(b^3)^4 \div (b^2)^6 = b^{12} \div b^{12} = 1$$

(3)
$$x^6 \div x^3 \div x^4 = x^{6-3} \div x^4 = \frac{1}{x^{4-3}} = \frac{1}{x}$$

(4)
$$a^7 \times (a^2 \div a^5) = a^7 \times \frac{1}{a^{5-2}} = a^4$$

04
$$3^{12} \div (3^2)^{\square} \div 3^2 = 3^{12-2 \times \square - 2}$$

$$12-2 \times \square -2 = 4$$

$$-2\times\square=-6$$

$$\therefore \square = 3$$

05 (4)
$$(x^3y^4)^5 \div (x^4y^2)^2 = x^{15}y^{20} \div x^8y^4 = x^{15-8}y^{20-4} = x^7y^{16}$$

06 (4)
$$a^3b^2 \times (a^5b^{\square})^3 = a^3b^2 \times a^{15}b^{3 \times \square} = a^{18}b^{2+3 \times \square}$$

$$b^{2+3 \times \square} = b^{14} \text{ and } \square = 4$$

$$a^{18} = a^{\square} \text{ and } \square = 18$$

유형 다지기

유형 01 지수법칙 - 지수의 합

22쪽

01 2

01-1 ①

01-2 ③

01-3 1

- **01** $2^x \times 2^3 = 64 = 2^6$, $2^{x+3} = 2^6$ x+3=6에서 x=3
- **01-1** $A = x \times x^3 = x^4$ $B = x^4 \times x^5 = x^9$ $\therefore A \times B = x^4 \times x^9 = x^{13}$
- **01-2** $xy = 2^{2a} \times 2^{2b} = 2^{2(a+b)} = 2^{2\times 3} = 2^6 = 64$ $\therefore \frac{1}{4}xy = \frac{1}{4} \times 64 = 16$
- **01-3** $36 \times 500 = (2^2 \times 3^2) \times (2^2 \times 5^3) = 2^4 \times 3^2 \times 5^3$ x=3, y=2, z=4이므로 x+y-z=3+2-4=1

유형 02 지수법칙 - 지수의 곱

● 22쪽 ●

02 20

02-1 ④

02-2 4

02-3 ②

- **02** $(-5)^{12} \times (-5)^6 = (-5)^{12+6} = (-5)^{18} = 5^{18}$ $5^{18} = 5^x$ 에서 x = 18 $a^{y} \times (a^{2})^{3} \times (a^{3})^{4} = a^{y} \times a^{6} \times a^{12} = a^{y+18}$ $a^{y+18} = a^{20}$ 에서 y=2x+y=18+2=20
- **02-1** $(b^2)^5 \times a^2 \times (a^2)^3 \times b$ $=b^{10}\times a^2\times a^6\times b$ $=a^{2+6}\times h^{10+1}$ $=a^8b^{11}$
- **02-2** $3^x \times 3^4 = (3^2)^x$ x+4=2x $\therefore x=4$
- 02-3 60, 45, 30의 최대공약수는 15이므로 $A = 2^{60} = (2^4)^{15} = 16^{15}$ $B=5^{45}=(5^3)^{15}=125^{15}$ $C=7^{30}=(7^2)^{15}=49^{15}$ A. B. C의 지수가 15로 같으므로 밑이 클수록 크다. $\therefore A < C < B$

유형 03 지수법칙 - 지수의 차

23쪽

03 ③

03-1 ③

03-2 2

03-3 4

- **03** ③ $3^5 \div (3^3 \div 3^2) = 3^5 \div 3^{3-2} = 3^{5-1} = 3^4$ $(4) (a^3)^2 \div (a^2)^2 = a^6 \div a^4 = a^2$
 - (5) (주어진 식)= $x^{20} \div x^3 \div x^8 = x^{20-3-8} = x^9$
- **03-1** $x^7 \div x^3 \div x^2 = x^{7-3-2} = x^2$

 - ① $x^7 \div x = x^6$ ② $x^5 \div x^7 = \frac{1}{r^2}$

 - (3) $x^7 \div x^5 = x^2$ (4) $x^3 \times \frac{1}{x^5} = \frac{1}{x^2}$
 - \bigcirc $x^7 \times x = x^8$
- **03-2** $(a^6 \div a^5) \div a^{2 \times \square} = a \div a^{2 \times \square} = \frac{1}{a^{2 \times \square 1}} = \frac{1}{a^3}$

이므로 $2 \times \square - 1 = 3$

 $\therefore \square = 2$

03-3 (좌번)= $(2^3)^x \times 2^3 \div (2^2)^5 = 2^{3x} \times 2^3 \div 2^{10} = 2^{3x-7}$ (우변)=32=25 $2^{3x-7}=2^5$ 에서 3x-7=5 $\therefore x=4$

유형 04 지수법칙 - 지수의 분배

23쪽

04 40

04-1 니, ㄹ 04-2 -21

- **04** $x^8y^{4a} = x^by^{12}$ $\Rightarrow a=3, b=8$ $-\frac{27x^{3c}}{z^3} = -\frac{dx^6}{z^3}$ $\Leftrightarrow c=2, d=27$ a+b+c+d=3+8+2+27=40
- **04-1** $\neg (-ab^2c^3)^4 = a^4b^8c^{12}$ $\vdash \left(\frac{y^2z}{r}\right)^2 = \frac{y^4z^2}{r^2}$
- **04-2** $\left(-\frac{3z^a}{y^4}\right)^b = \frac{(-3)^b z^{ab}}{y^{4b}} = \frac{cz^{2a+3}}{y^{12}}$ $\Rightarrow 12$ $(-3)^b = c$ 이므로 $(-3)^3 = c$ $\therefore c = -27$ ab = 2a + 3이므로 3a = 2a + 3 : a = 3a+b+c=3+3+(-27)=-21

유형 05 지수법칙 - 종합

24쪽

05 6

05-1 4개

05-2 ②

- **05** $2^9 \div 2^a = 2^5, 9 a = 5$ $\therefore a = 4$ $5^2 \div 5^{2b} \times 5^5 = 5^3, 2 2b + 5 = 3$ $\therefore b = 2$ $\therefore a + b = 4 + 2 = 6$
- **05-1** \Box $(2x^2y)^3 = 8x^6y^3$
- **05-2** ① $x^{2 \times \square + 4} = x^{12}$ $\therefore \square = 4$

 - ③ (좌변) $=x \times x^{4 \times \square} \div x^6 = x^{1+4 \times \square 6}$ $1+4 \times \square - 6 = 11 \ 4 \times \square = 16 \ \therefore \square = 4$
 - $4 \frac{x^5 y^{5 \times \square}}{z^{15}} = \frac{x^5 y^{20}}{z^{15}} : \square = 4$
 - ⑤ (좌변)= $x^{12} \times x^{\square} \div x^9 = x^{12+\square-9}$ 12+ \square -9=7 \square =4

유형 06 지수법칙의 활용

24쪽

06 22

06-1 7 **06-2** 5 **06-3** 64 mm **06-4** 1250시간

- **06** 20(GB)=20×2¹⁰(MB) =20×2¹⁰×2¹⁰(KB) =(5×2²)×2¹⁰×2¹⁰=5×2²²(KB) ∴ k=22
- 06-1 이 생물 1마리는 6시간 후에 2⁶마리가 된다.
 따라서 생물이 2마리가 있으므로 6시간 후에는
 2×2⁶=2⁷(마리)가 된다.
 ∴ n=7
- 06-2 432=2⁴×3³이고 (각뿔의 부피)= $\frac{1}{3}$ × (밑넓이) × (높이)이므로 $\frac{1}{3}$ × $(2^x \times 3^2)$ × $(2 \times 3^y) = 2^{x+1} \times 3^{y+1} = 2^4 \times 3^3$ x+1=4, y+1=3에서 x=3, y=2x+y=3+2=5
- 06-30.2 cm=2 mm이므로1번 접었을 때의 종이의 두께는 $2 \times 2 = 2^2 = 4 \text{(mm)}$ 2번 접었을 때의 종이의 두께는 $2 \times 2 \times 2 = 2^3 = 8 \text{(mm)}$ 3번 접었을 때의 종이의 두께는 $2^4 = 16 \text{(mm)}$:따라서 5번 접었을 때의 종이의 두께는 $2^6 = 64 \text{(mm)}$
- 06-4 (시간)=(거리)÷(속력)이므로 구하는 시간은

$$\frac{3\times10^5}{240} = \frac{3\times10^5}{2^3\times3\times10} = \frac{10^4}{2^3} = 1250(\text{A})\text{Z}$$

유형 **07** 지수법칙의 응용 (1) - 거듭제곱의 덧셈식 • 25쪽 •

07 ②

07-1 3^6 **07-2** 3 **07-3** 32 **07-4** $\frac{1}{9}$

- **07** $25^{3}+25^{3}+25^{3}+25^{3}+25^{3}$ = 5×25^{3} = $5 \times (5^{2})^{3}$ = $5 \times 5^{6}=5^{7}$
- **07-1** $3^5 + 3^5 + 3^5 = 3 \times 3^5 = 3^6$
- **07-2** $A^{11} + A^{11} + A^{11} = 9^{6}$ $3 \times A^{11} = (3^{2})^{6}$ $3 \times A^{11} = 3^{12}$ $A^{11} = 3^{11}$ $\therefore A = 3$
- **07-3** $2^2 \times 2^2 \times 2^2 = 2^{2+2+2} = 2^6$ $\therefore a = 6$ $4^3 + 4^3 + 4^3 + 4^3 = 4 \times 4^3 = 2^2 \times (2^2)^3 = 2^8$ $\therefore b = 8$ $\{(5^3)^3\}^2 = 5^c, 5^{3 \times 3 \times 2} = 5^c$ $\therefore c = 18$ $\therefore a + b + c = 6 + 8 + 18 = 32$
- $\begin{array}{c} \textbf{07-4} \ \, \dfrac{2^4 + 2^4 + 2^4}{3^5 + 3^5 + 3^5 + 3^5 + 3^5} = \dfrac{3 \times 2^4}{4 \times 3^5} = \dfrac{2^2}{3^4} \\ \\ \dfrac{6^3 + 6^3}{8^2 + 8^2 + 8^2} = \dfrac{2 \times (2 \times 3)^3}{3 \times (2^3)^2} = \dfrac{2^4 \times 3^3}{3 \times 2^6} = \dfrac{3^2}{2^2} \\ \\ (주어진 신) = \dfrac{2^2}{3^4} \times \dfrac{3^2}{2^2} = \dfrac{1}{3^2} = \dfrac{1}{9} \end{array}$

유형 **08** 지수법칙의 응용 (2) - 밑은 같고 지수가 미지수일 때 • 26쪽 •

08 1

08-1 1 **08-2** 8

- **08** $4^{x+1} + 4^x = 4^x \times 4^1 + 4^x = 5 \times 4^x$ $5 \times 4^x = 320, \ 4^x = 64 = 4^3$ $\therefore x = 3$
- 08-1 (좌변)= $3^{a+2} \times \{3^a \times (1+3)\}$ = $3^{a+2} \times 3^a \times 2^2$ = $3^{2a+2} \times 2^2$ (우변)= $324 = 2^2 \times 3^4$ $2^2 \times 3^{2a+2} = 2^2 \times 3^4$ 에서 2a+2=4 $\therefore a=1$

08-2 25^{2x-1}=125^{4-x}에서 (5²)^{2x-1}=(5³)^{4-x}, 5^{4x-2}=5^{12-3x} 따라서 4x-2=12-3x이므로 x=2 3^{y+17}÷27^y=9^y+9^y+9^y에서 3^{y+17}÷(3³)^y=3×(3²)^y, 3^{y+17-3y}=3^{2y+1} 따라서 17-2y=2y+1이므로 y=4 ∴ 2x+y=2×2+4=8

유형 09 지수법칙의 응용 (3) - 문자를 사용하여 나타내기 • 26쪽 •

09 (5)

09-1 ④ **09-2** ③ **09-3** ⑤

09
$$64^6 = (2^6)^6 = 2^{36} = (2^3)^{12} = A^{12}$$

 $\therefore n = 12$

09-1
$$A = 3^{x+2} = 3^x \times 3^2$$
이므로 $3^x = \frac{A}{9}$

$$\therefore 27^x = (3^3)^x = (3^x)^3 = \left(\frac{A}{9}\right)^3 = \frac{A^3}{729}$$

09-2
$$25^5 \div 25^{15} = \frac{1}{25^{10}} = \frac{1}{(5^2)^{10}} = \frac{1}{(5^{10})^2} = \frac{1}{a^2}$$

09-3
$$9^{n} \times \frac{1}{25^{n}} \div 15^{n} = 3^{2n} \times \frac{1}{5^{2n}} \times \frac{1}{3^{n} \times 5^{n}}$$
$$= 3^{2n-n} \times \frac{1}{5^{2n+n}} = 3^{n} \times \frac{1}{5^{3n}} = \frac{A}{B^{3}}$$

유형 **10** 지수법칙의 응용 (4) - 자릿수

10 ⑤

10-1 ③ 10-2 5자리 10-3 ② 10-4 6 10-5 7

10 2⁹×3²×5⁵ =2⁴×2⁵×3²×5⁵ =(2⁴×3²)×(2⁵×5⁵) =16×9×10⁵ =144×10⁵ ∴ 2⁹×3²×5⁵은 8자리 자연수이므로 n=8

- **10-1** $2^5 \times 5^6 \times 7 = 5 \times 7 \times (2 \times 5)^5 = 35 \times 10^5$ 따라서 $2^5 \times 5^6 \times 7$ 은 7자리의 자연수이다.
- **10-2** (좌번)= $x^3y^m \times (x^ny^2)^3 = x^3y^m \times x^{3n}y^6 = x^{3+3n}y^{m+6}$ 3+3n=21, m+6=10에서 n=6, m=4 $2^n \times 5^m = 2^6 \times 5^4 = 2^2 \times (2^4 \times 5^4) = 4 \times 10^4$

∴ 5자리

10-3 7¹=7, 7²=49, 7³=343, 7⁴=2401, 7⁵=16807, …이므로 7ⁿ의 일의 자리의 숫자는 7, 9, 3, 1의 순으로 4개의 숫자가 반복된다.

 $49A = 7^2 \times 7^{45} = 7^{47}$

 $47=4\times11+3$ 이므로 49A의 일의 자리의 숫자는 3이다.

10-4 ≪3≫=3, ≪3²≫=9, ≪3³≫=7, ≪3⁴≫=1, ≪3⁵≫=3, …이므로 3, 9, 7, 1이 반복된다. 따라서 23=4×5+3이므로 3²³의 일의 자리의 숫자는 7이고. 46=4×11+2이므로 3⁴⁶의 일의 자리의 숫자는 9이다. 따라서 ≪3²³+3⁴⁶≫=6(∵7+9=16)

10-5
$$2^{a+1} \times 3^2 \times 5^{a-2}$$

 $= 2^{(a-2)+3} \times 3^2 \times 5^{a-2}$
 $= 2^3 \times 3^2 \times 2^{a-2} \times 5^{a-2}$
 $= 72 \times 10^{a-2}$
 $72 \times 10^{a-2}$ 이 7자리의 자연수이므로 $10^{a-2} = 10^5$
따라서 $a-2=5$ 이므로 $a=7$

선물형 다지기

• 28∼29쪽 •

1-1 1단계 x^6 , y^{12} , x^7y^{15} 2단계 7, 15, 7, 15, 105

1-2 36

27쪽

2-1 1단계 2, 2, $\frac{1}{2}a$, 3, 3, 3b 2단계 2, 2^x , 3^x 3단계 $\frac{1}{2}a$, 3b, $\frac{9}{2}ab^2$

2-2 $\frac{125}{64}AB^3$

3-1 26

3-2 3

4.1 2

4-2 11

1-2 $240=2^4 \times 3 \times 5$ 이므로 … ① $240^6=(2^4 \times 3 \times 5)^6=2^{24} \times 3^6 \times 5^6$

∴ a=24, b=6, c=6이므로

a+b+c=24+6+6=36

 채점 요소
 배점

 ① 240을 소인수분해하기
 2점

 ② a+b+c의 값 구하기
 3점

 총점
 5점

... 2

2-2 $A=5^{x-3}=5^x imes rac{1}{5^3}$ 이므로 양변에 125를 곱하면 $5^x=125A$

 $B=2^{x+2}=2^x\times 2^2$ 이므로 양변을 4로 나누면 $2^x=\frac{1}{4}B$

$$40^{x} = (2^{3} \times 5)^{x} = 2^{3x} \times 5^{x} = (2^{x})^{3} \times 5^{x}$$

$$=\left(\frac{1}{4}B\right)^3 \times 125A = \frac{125}{64}AB^3$$

3 / 10	A 123	$-3 \wedge 2$
		$=9\times2^2$
		0

 $125^6 = (5^3)^6 = 5^{18}$

3단계

4-2 $16^5 = (2^4)^5 = 2^{20}$

... 0

 $9 \times 16^5 \times 125^6 = 9 \times 2^{20} \times 5^{18}$

$$=9 \times 2^{2} \times (2^{18} \times 5^{18})$$
$$=9 \times 2^{2} \times 10^{18}$$

$$=36 \times 10^{18}$$

 $\mathbf{0}$ 16^5 , 125^6 을 밑이 각각 2, 5인 거듭제곱꼴로 변형하기 ② 지수법칙을 이용하여 $a \times 10^n$ 의 꼴로 변형하기

a=16. n=14이므로 a-n=16-14=2

$$n-m=20-9=11$$

... 🚯

3점

2점

... 2

① 5^x , 2^x 을 A , B 를 사용하여 나타내기	2점	
$2 40^{x}$ 을 2^{x} 과 5^{x} 의 곱으로 나타내기	2점	
$oldsymbol{3}$ 40^x 을 A , B 를 사용하여 나타내기	2점	
총점	6점	_

3-1 1단계

$$2^{12}\!+\!2^{12}\!+\!2^{12}\!+\!2^{12}\!+\!2^{12}\!=\!4\!\times\!2^{12}\!=\!2^2\!\times\!2^{12}\!=\!2^{14}$$

 $\therefore x=14$

2단계

$$2^{12} \times 2^{12} \times 2^{12} \times 2^{12} = (2^{12})^4 = 2^{48}$$

 $\therefore y = 48$

3단계

$$(8^4)^3 = (2^{12})^3 = 2^{36}$$
 $\therefore z = 36$

$$x+y-z=14+48-36=26$$

3-2 $49^{4x-1} = 343^{3-x}$ 의 양변을 각각 밑이 7인 거듭제곱으로

나타내면

$$(7^2)^{4x-1} = (7^3)^{3-x}$$
, $2(4x-1) = 3(3-x)$

$$8x-2=9-3x$$
, $11x=11$ $\therefore x=1$

... 1 $27^{y+1} = (3^3)^{y+1} = 3^{3y+3}, 9^{2y} = (3^2)^{2y} = 3^{4y}$ 이므로

$$27^{y+1} \div 9^{2y} = 3^{3y+3} \div 3^{4y} = 3^{3y+3-4y} = 3^{1}$$

$$3y+3-4y=1, -y=-2$$
 : $y=2$... 2

$$x+y=1+2=3$$
 ... 3

채점 요소	배점
lue 밑을 같게 한 후 지수법칙을 이용하여 x 의 값 구하기	3점
② 밑을 같게 한 후 지수법칙을 이용하여 y의 값 구하기	3점
③ x+y의 값 구하기	1점
총점	7점

$$8^6 = (2^3)^6 = 2^{18}, 25^7 = (5^2)^7 = 5^{14}$$

$$8^{6} \times 25^{7} = 2^{18} \times 5^{14} = 2^{4} \times 2^{14} \times 5^{14} = 2^{4} \times (2^{14} \times 5^{14})$$
$$= 16 \times 10^{14}$$

개념 다지기

02 (1)
$$2x^9$$
 (2) $54x^{11}$ (3) $12a^3b^2$ (4) $16a^6b^{12}$

03 (1)
$$6x$$
 (2) $\frac{1}{x^2}$ (3) $-\frac{1}{3}ab$ (4) $-y^5$

04 (1) 8a (2)
$$-2xy^2$$
 (3) $\frac{a^6}{b^2}$ (4) $-\frac{1}{12}x^5y$

05 (1)
$$8ab$$
 (2) $-9x^2y$ (3) $-5x^3$ (4) $32x^2y^4$ **06** $4a^2b^3$

02 (1) (주어진 식)=
$$x^6 \times 2x^3 = 2x^9$$

$$(2)$$
 (주어진 식)= $(-2x^2)\times(-27x^9)=54x^{11}$

(3) (주어진 식)=
$$3a \times 4b^2 \times a^2 = 12a^3b^2$$

(4) (주어진 식)=
$$a^6b^2 \times b^2 \times 16b^8 = 16a^6b^{12}$$

03 (3) (주어진 식)=
$$\frac{3a^4b^3}{-9a^3b^2}=-\frac{1}{3}ab$$

(4) (주어진 식)=
$$2x^4y^7 imes \left(-\frac{2}{xy^2}\right) imes \frac{1}{4x^3} = -y^5$$

04 (1) (주어진 식)=16
$$a^6 \div 2a^5 = 8a$$

(2) (주어진 식)=
$$(-72x^3y^{10})$$
÷ $(36x^2y^8)$ = $-2xy^2$

(3) (주어진 식)=
$$\frac{9}{4}a^4b^2 \div \frac{9b^4}{4a^2} = \frac{9}{4}a^4b^2 \times \frac{4a^2}{9b^4} = \frac{a^6}{b^2}$$

$$(4)$$
 (주어진 식)= $rac{1}{9}x^8y^4 imesrac{9}{4xy^2} imes\left(-rac{1}{3x^2y}
ight)\!=\!-rac{1}{12}x^5y$

05 (1) (주어진 식)=
$$\frac{2a^2b\times 4b}{ab}$$
=8 ab

(2) (주어진 식)=
$$\frac{-3xy \times 3x^2y^3}{xy^3}$$
= $-9x^2y$

(3) (주어진 식)=
$$25x^4 \times \frac{3}{5}x \div (-3x^2)$$

$$=15x^5 \times \left(-\frac{1}{3x^2}\right) = -5x^3$$

(4) (주어진 식)=
$$(-16xy^2) \div 4x^2y \times (-8x^3y^3)$$
$$=\frac{-16xy^2 \times (-8x^3y^3)}{4x^2y}=32x^2y^4$$

06 (삼각형의 넓이) $=\frac{1}{2} \times 4ab^2 \times 2ab = 4a^2b^3$

유형 11 단항식의 곱셈

• 32쪽 ●

11 ③

11
$$\frac{1}{3}x^2y^3z \times 15xy^2z = \frac{1}{3} \times 15 \times x^{2+1}y^{3+2}z^{1+1} = 5x^3y^5z^2$$

$$\begin{aligned} \textbf{11-1} & & (-2x^3y^2)^3 \times (-5xy^3) \times (-x^2y)^2 \\ & = & (-8x^9y^6) \times (-5xy^3) \times x^4y^2 \\ & = & -8 \times (-5) \times x^{9+1+4}y^{6+3+2} \\ & = & 40x^{14}y^{11} \end{aligned}$$

$$\therefore A=40, B=14, C=11$$
이므로 $A+B+C=40+14+11=65$

11-2
$$(-3x^ay^4)^3 \times \left(-\frac{2}{3}xy^b\right)^2 = cx^5y^{16}$$

 $(-27x^{3a}y^{12}) \times \frac{4}{9}x^2y^{2b} = cx^5y^{16}$
order $(-27) \times \frac{4}{9} = c$ order $c = -12$
 $x^{3a+2} = x^5$ order $3a+2=5$ $\therefore a=1$

$$y^{12+2b} = y^{16}$$
에서 $12+2b=16$ $\therefore b=2$

$$\therefore abc = 1 \times 2 \times (-12) = -24$$

11-3 (주어진 식)=
$$x^2y^6 \times \frac{x^6}{y^3} \times \frac{9}{x^2y^2} = 9x^6y$$

 $x=-1, y=3$ 이므로 $9x^6y=9 \times (-1)^6 \times 3=27$

유형 12 단항식의 나눗셈

● 32쪽 ●

12 ④

12-1 11

12-2 57

12-3 $9x^6y^{10}$ **12-4** 3

12 ④
$$(a^2b^3)^4 \div a^3b = a^8b^{12} \div a^3b = a^5b^{11}$$

|참고|③ $8x^6 \div (-2x^3)^2 = 8x^6 \div 4x^6 = 2$
⑤ $(-3a^3b^2)^4 \div 9a^2b^3 = 81a^{12}b^8 \div 9a^2b^3 = 9a^{10}b^5$

12-1
$$(2x^4)^3 \div (-x^3)^2 = 8x^{12} \div x^6 = 8x^6$$
 $\therefore a = 8, b = 6$
 $12y^6 \div 2y^3 \div (-2y^2) = 6y^3 \div (-2y^2) = -3y$
 $\therefore c = -3, d = 1$
 $\therefore a - c = 8 - (-3) = 11$

12-2 (좌변)=
$$6x^2y^3 \times \frac{1}{x^3y^6} \times 9x^2 = \frac{54x}{y^3}$$

따라서 $A=54$, $B=3$ 이므로 $A+B=54+3=57$

12-3
$$A = (3x^{2}y)^{2} \times (-2xy^{2})^{3} = 9x^{4}y^{2} \times (-8x^{3}y^{6})$$

 $= -72x^{7}y^{8}$
 $B = (-2x^{3}y)^{2} \div \left(-\frac{1}{2}x^{5}y^{4}\right)$
 $= 4x^{6}y^{2} \times \left(-\frac{2}{x^{5}y^{4}}\right) = -\frac{8x}{y^{2}}$
 $\therefore A \div B = -72x^{7}y^{8} \div \left(-\frac{8x}{y^{2}}\right)$
 $= -72x^{7}y^{8} \times \left(-\frac{y^{2}}{8x}\right) = 9x^{6}y^{10}$

12-4 (좌번) =
$$\frac{9}{25}a^6b^{2x}$$
 ÷ $\left(-\frac{1}{125}a^{3y}b^9\right)$
= $\frac{9}{25}a^6b^{2x}$ × $\left(-\frac{125}{a^{3y}b^9}\right)$
= -45 × $\frac{a^6}{a^{3y}}$ × $\frac{b^{2x}}{b^9}$
 $\frac{a^6}{a^{3y}} = a^3$ 에서 $6-3y=3, -3y=-3$ ∴ $y=1$
 $\frac{b^{2x}}{b^9} = \frac{1}{b^5}$ 에서 $9-2x=5, -2x=-4$ ∴ $x=2$
∴ $x+y=2+1=3$

유형 **13** 단항식의 곱셈과 나눗셈의 혼합 계산 • 33쪽 •

13 -2

13 (주어진 식)=
$$\frac{1}{8}x^3y^6 \times 3x^3yz^3 \times \frac{4}{9x^4y^6} = \frac{x^2yz^3}{6}$$

따라서
$$x=2, y=3, z=-1$$
이므로 $\frac{2^2\times 3\times (-1)^3}{6}=-2$

13-1 ㄱ. (주어진 식)=
$$(-8xy) imes rac{1}{x^3y} imes rac{x^2y^4}{4} = -2y^4$$
 ㄴ. (주어진 식)= $a^2 imes a^2b^4 imes \left(-rac{1}{a^4b}\right) = -b^3$ ㄷ. (주어진 식)= $24ab^4 imes rac{1}{9}a^2b^4 imes \left(-rac{27}{8a^6b^9}\right) = -rac{9}{a^3b}$ ㄹ. (주어진 식)= $4xy imes \left(-rac{3}{4xy^2}\right) imes \left(-rac{x^2y^3}{3}\right) = x^2y^2$

13-2 (좌번)=
$$(-x^Ay^2) \div 2xy^B \times 4x^3y$$

= $(-x^Ay^2) \times \frac{1}{2xy^B} \times 4x^3y$
= $-2x^{A-1+3}y^{2-B+1}$
 $-2x^{A-1+3}y^{2-B+1} = Cx^4y^2$ 에서 $A=2$, $B=1$, $C=-2$
 $\therefore A+B-C=2+1-(-2)=5$

유형 14 단항식의 계산에서 어떤 식 구하기

14
$$-3x^3y^3$$

14-1 $-4a^4b^3$ 14-2 $\frac{15}{2}x^2$

14
$$-4xy \times \square \times \frac{2}{x^3y^2} = 24xy^2$$

$$\square = 24xy^2 \times \left(-\frac{1}{4xy}\right) \times \frac{x^3y^2}{2} = -3x^3y^3$$

14-1 어떤 식을
$$A$$
라 하면 $8a^5b^7 \div A = -2ab^4$ $A = 8a^5b^7 \div (-2ab^4) = -4a^4b^3$

14-2
$$\frac{3}{2}xy^7 \div \bigcirc \times 9x^2y^4 = 18xy^2$$

 $\frac{3}{2}xy^7 \div \bigcirc = 18xy^2 \div 9x^2y^4 = \frac{2}{xy^2}$
 $\therefore \bigcirc = \frac{3}{2}xy^7 \div \frac{2}{xy^2} = \frac{3}{2}xy^7 \times \frac{1}{2}xy^2 = \frac{3}{4}x^2y^9$
 $(-3xy^2)^3 \times \bigcirc \div \left(\frac{3}{xy}\right)^2 = -\frac{30x^5}{y}$
 $-27x^3y^6 \times \bigcirc = -\frac{30x^5}{y} \times \frac{9}{x^2y^2} = -\frac{270x^3}{y^3}$
 $\therefore \bigcirc = -\frac{270x^3}{y^3} \div (-27x^3y^6)$
 $= -\frac{270x^3}{y^3} \times \left(-\frac{1}{27x^3y^6}\right) = \frac{10}{y^9}$
 $\therefore \bigcirc \times \bigcirc = \frac{3}{4}x^2y^9 \times \frac{10}{y^9} = \frac{15}{2}x^2$

유형 15 바르게 계산한 식 구하기

● 34쪽 ●

15 ④

15-1
$$12x^3y^5$$
 15-2 $-3xy$

15 어떤 식을 A라 하면 $A \div \frac{2b}{3a^2} = -(9a^2b)^2$ $\therefore A = -81a^4b^2 \times \frac{2b}{3a^2} = -54a^2b^3$ 따라서 바르게 계산하면 $-54a^2b^3 \times \frac{2b}{3a^2} = -36b^4$

15-1 어떤 식을 A라 하면 $A \times \frac{1}{2} xy = \frac{4}{2} x^5 y^7 \text{에서 } A = \frac{4}{2} x^5 y^7 \div \frac{1}{2} xy = 4x^4 y^6$

$$\therefore$$
 (바르게 계산한 결과)= $4x^4y^6\div \frac{1}{3}xy=4x^4y^6 imes \frac{3}{xy}$
$$=12x^3y^5$$

15-2
$$A \div \frac{3y}{2x^3} \times (-2xy^2) = -\frac{16}{3} x^9 y^3$$
에서
$$A = -\frac{16}{3} x^9 y^3 \div (-2xy^2) \times \frac{3y}{2x^3}$$
$$= -\frac{16}{3} x^9 y^3 \times \left(-\frac{1}{2xy^2}\right) \times \frac{3y}{2x^3} = 4x^5 y^2$$
$$\therefore (바르게 계산한 결과) = 4x^5 y^2 \times \frac{3y}{2x^3} \div (-2xy^2)$$
$$= 4x^5 y^2 \times \frac{3y}{2x^3} \times \left(-\frac{1}{2xy^2}\right)$$
$$= -3xy$$

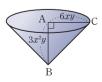
유형 16 단항식의 곱셈의 활용

● 35쪽 ●

16 $36\pi x^4 y^3$

16-1 ② **16-2** $100\pi x^5$

16 주어진 직각삼각형 ABC에서 변 AB 를 축으로 하여 1회전 시킬 때 생기는 입체도형은 오른쪽 그림과 같다. 따라서 입체도형의 부피는



$$\frac{1}{3}\pi \times (6xy)^2 \times 3x^2y$$

$$= \frac{1}{3}\pi \times 36x^2y^2 \times 3x^2y = 36\pi x^4y^3$$

- **16-1** (삼각형의 넓이)= $\frac{1}{2}$ imes(밑변의 길이)imes(높이) $=\frac{1}{2} imes (3ab)^2 imes 2a^2b = 9a^4b^3$
- **16-2** (물의 높이)= $\frac{2}{3} \times \frac{6x}{y^2} = \frac{4x}{y^2}$ 이므로 (물의 부피)= $\pi \times (5x^2y)^2 \times \frac{4x}{y^2} = \pi \times 25x^4y^2 \times \frac{4x}{y^2}$ $= 100\pi x^5$

유형 17 단항식의 곱셈과 나눗셈의 활용

• 35쪽 •

17
$$\frac{4a^2}{b^2}$$

17-1 $2a^5b^2$ **17-2** $21a^2b$

- 17 $24a^5b^3 = 3a^2b \times 2ab^4 \times (\Leftrightarrow \circ)$
 - $\therefore (\frac{1}{2}) = 24a^5b^3 \times \frac{1}{3a^2b} \times \frac{1}{2ab^4} = \frac{4a^2}{b^2}$
- **17-1** $\frac{4}{5}a^3b^2 \times 10a^4b = \frac{1}{2} \times 8a^2b \times h$

$$\therefore h = \frac{4}{5}a^3b^2 \times 10a^4b \div 4a^2b$$
$$= \frac{4}{5}a^3b^2 \times 10a^4b \times \frac{1}{4a^2b} = 2a^5b^2$$

17-2 (원뿔의 부피) $=\frac{1}{3}\pi \times ($ 밑면의 반지름의 길이 $)^2 \times ($ 높이)

이므로
$$28\pi a^4b^5 = \frac{1}{3}\pi \times (2ab^2)^2 \times (높이)$$

$$\therefore \left(\frac{1}{32}\diamond\right] = 28\pi a^4 b^5 \times \frac{3}{\pi} \times \frac{1}{4a^2b^4} = 21a^2b$$

선물형 다지기

• 36∼37쪽 •

- **1-1** 1단계 $9x^6y^2$, -3, A+5
 - 2단계 -3, A+5, 5, 6, -3, 8
 - 3단계 6, -3, 8, 11
- **1-2** 38
- **2-1** 1단계 $3xy^3$, $-4x^2y^2$ 2단계 $7x^2y$, $4x^2y$
 - 3단계 $-4x^2y^2$, $4x^2y$, $16x^4y^4$, $4x^2y^3$
- **2-2** $-\frac{2b^4}{a}$
- **3-1** $24xy^4$
- **3-2** $24x^9y^5$
- **4-1** 1:2
- **4-2** 4*a* : 3*b*

1-2 (좌번)=
$$\left(\frac{1}{3}a^2b\right)^3\div\left(\frac{2}{3}a^3b^2\right)^2\times(-Bab^A)$$

$$=\frac{a^6b^3}{27}\div\frac{4a^6b^4}{9}\times(-Bab^A)$$

$$=\frac{a^6b^3}{27}\times\frac{9}{4a^6b^4}\times(-Bab^A)=-\frac{Bab^A}{12b}\qquad\cdots$$

$$-\frac{Bab^A}{12b}=-3ab$$
에서 $-\frac{B}{12}=-3$, $A-1=1$ 이므로

$$A=2$$
 $B=36$

$$A+B=38$$

... 🔞

채점 요소	배점
● 좌변 간단히 하기	2점
② A, B의 값 각각 구하기	2점
③ A+B의 값 구하기	1점
총점	5점

2-2 나에서 $A = 3a^2b \div 2ab^2 = \frac{3a}{2b}$... **①**

ㄱ에서
$$\left(-\frac{2b^4}{a}\right) \times B = \frac{3a}{2b}$$

$$\therefore B = \frac{3a}{2b} \times \left(-\frac{a}{2b^4} \right) = -\frac{3a^2}{4b^5} \qquad \cdots 2$$

$$\therefore A \div B = \frac{3a}{2b} \div \left(-\frac{3a^2}{4b^5}\right) = \frac{3a}{2b} \times \left(-\frac{4b^5}{3a^2}\right)$$

$$=-\frac{2b^4}{a}$$
 ... (3)

채점 요소	배점
① <i>A</i> 의 값 구하기	2점
② <i>B</i> 의 값 구하기	2점
③ A÷B의 값 구하기	2점
총점	6점

3-1 1단계

어떤 식을 A라 할 때, $A \times \left(-\frac{2x^2}{y}\right) \div 4x = 6x^3y^2$

ე□F게

$$A = 6x^{3}y^{2} \times 4x \div \left(-\frac{2x^{2}}{y}\right)$$

$$= 6x^{3}y^{2} \times 4x \times \left(-\frac{y}{2x^{2}}\right) = -12x^{2}y^{3}$$

3다게

$$\begin{split} &-12x^2y^3 \div \left(-\frac{2x^2}{y}\right) \times 4x \\ &= -12x^2y^3 \times \left(-\frac{y}{2x^2}\right) \times 4x = 24xy^4 \end{split}$$

3-2 어떤 식을 *A*라 하면

$$(-2x^2y)^2 \div A \times (-x^2y) = \frac{2}{3}x^3y \qquad \cdots \quad \mathbf{0}$$

$$4x^4y^2 \div A \times (-x^2y) = \frac{2}{3}x^3y$$

$$\therefore A = 4x^{4}y^{2} \times (-x^{2}y) \div \frac{2}{3}x^{3}y$$

$$= -4x^{6}y^{3} \div \frac{2}{3}x^{3}y$$

$$= -4x^{6}y^{3} \times \frac{3}{2x^{3}y} = -6x^{3}y^{2} \qquad \cdots 2$$

따라서 바르게 계산한 답은

$$(-2x^2y)^2 \times A \times (-x^2y)$$

$$=4x^4y^2\times(-6x^3y^2)\times(-x^2y)=24x^9y^5$$

채점 요소	배점
● 잘못 계산한 식 세우기	1점
② 어떤 식 구하기	3점
❸ 바르게 계산한 결과 구하기	3점
총점	7점

4-1 1단계

(원기둥의 부피)=(밑넓이)×(높이)이므로 (원기둥 \mathbf{A} 의 부피)= π × $(ab)^2$ × $9a^2$ = $9\pi a^4 b^2$

(원기둥 B의 부피)= $\pi \times (3a^2)^2 \times 2b^2 = 18\pi a^4 b^2$

2단계

(원기둥 A의 부피) : (원기둥 B의 부피)

 $=9\pi a^4 b^2 : 18\pi a^4 b^2 = 1 : 2$

- 4-2 만들어지는 입체도형은 원기둥이다.
 - (i) 변 AB를 회전축으로 하여 생기는 원기둥의 부피는 $\pi \times (4a)^2 \times 3b = 48\pi a^2 b$
 - (ii) 변 BC를 회전축으로 하여 생기는 원기둥의 부피는

$$\pi \times (3b)^2 \times 4a = 36\pi ab^2 \qquad \cdots$$

따라서 두 입체도형의 부피의 비는

 $48\pi a^2 b : 36\pi a b^2 = 4a : 3b$

(단. a. b는 5 이상의 소수이면서 서로소)

채점 요소	배점
회전체의 모양을 알 수 있다.	1점
만들어지는 두 원기둥의 부피 각각 구하기	4점
● 두 입체도형의 부피의 비 구하기	2점
총점	7점

2 다항식의 계산

▲ 개념 다지기

39쪽 •

01 (1)
$$3x - y$$
 (2) $6a + b$ (3) $3a + 5b$ (4) $-6x - 4y$

02 (1)
$$5x^2 + x - 1$$
 (2) $3x^2 + 2x + 5$ (3) $8x - 18$ (4) $\frac{7y^2 - 7}{4}$

03 (1) y (2) 2x+4

... 🚯

... ①

... 🚯

04 (1)
$$3a^2-6ab$$
 (2) $10x^2+2x$ (3) $-8x^2+12xy$ (4) $-2x^2-4xy+5x$

05 (1)
$$9x-4$$
 (2) $-2x+5$ (3) $-10a-6b^2$

06 (1)
$$-6x^3y^2 + 9x^2y^2$$
 (2) $5a - 9b$ **07** (1) 4 (2) 42

02 (2) (주어진 식)=
$$5x^2-x+1-2x^2+3x+4$$

= $(5x^2-2x^2)+(-x+3x)+1+4$
= $3x^2+2x+5$

(4) (주어진 식)
$$= \frac{y^2 - 2y + 3 + 2(3y^2 + y - 5)}{4}$$

$$= \frac{y^2 - 2y + 3 + 6y^2 + 2y - 10}{4}$$

$$= \frac{7y^2 - 7}{4}$$

03 (1) (주어진 식)=
$$(2x-x-3y)-(y+x-5y)$$

= $(x-3y)-(x-4y)$
= $x-3y-x+4y=y$

(2) (주어진 식)=
$$3x-\{4x-3-(3+3x-2)\}$$

= $3x-(4x-3-3x-1)$
= $3x-x+4=2x+4$

04 (1)
$$3a(a-2b) = 3a \times a - 3a \times 2b = 3a^2 - 6ab$$

(4) $-x(2x+4y-5)$
 $= (-x) \times 2x + (-x) \times 4y + (-x) \times (-5)$
 $= -2x^2 - 4xy + 5x$

05
$$(2)$$
 (주어진 식)= $(6xy-15y)\times\left(-\frac{1}{3y}\right)$
$$=6xy\times\left(-\frac{1}{3y}\right)-15y\times\left(-\frac{1}{3y}\right)$$
$$=-2x+5$$
 (3) (주어진 식)= $15a^2b\times\left(-\frac{2}{3ab}\right)+9ab^3\times\left(-\frac{2}{3ab}\right)$

 $=-10a-6b^2$

- **06** (1) (주어진 식)= $(4x^2-6x)\times\frac{1}{2x}\times(-3x^2y^2)$ $=(2x-3)\times(-3x^2y^2)=-6x^3y^2+9x^2y^2$ (2) (주어짓 식)=(2a-5b)+(3a-4b)=5a-9b
- **07** (1) (주어진 식)= $\frac{2x^3y^2}{-x^2y}$ =-2xy= $-2 \times (-1) \times 2$ =4 (2) (주어진 식)= $8x-8y+2=8\times2-8\times(-3)+2=42$

🎖 유형 다지기

유형 18 다항식의 덧셈과 뺄셈

40쪽

18 ③

18-1 (1)

18-2
$$\bigcirc$$
 $-2x+4y+1$

$$\bigcirc \frac{7x+y}{2}$$

$$\Box -x-y+1$$

18-3 9

- 18 3(7a+2b+1)+2(2a-3)=21a+6b+3+4a-6=25a+6b-3따라서 a의 계수와 상수항의 합은 25+(-3)=22
- **18-1** $\frac{1}{2}(12x-4y)-\frac{2}{2}(-3x+6y)$ =6x-2y+2x-4y=8x-6y
- **18-2** $\bigcirc = 3x 2y + 1 + (-5x + 6y) = -2x + 4y + 1$ $\bigcirc = 4x - y + \left(-\frac{x - 3y}{2}\right) = \frac{2(4x - y) - (x - 3y)}{2}$ $=\frac{8x-2y-x+3y}{2}=\frac{7x+y}{2}$ = 3x-2y+1-(4x-y)=3x-2y+1-4x+y=-x-y+1

$$\begin{aligned}
& = -5x + 6y - \left(-\frac{x - 3y}{2}\right) \\
& = \frac{2(-5x + 6y) + (x - 3y)}{2} \\
& = \frac{-10x + 12y + x - 3y}{2} = \frac{-9x + 9y}{2}
\end{aligned}$$

18-3 가영:
$$(-x+5y)-(3x-Ay)=-x+5y-3x+Ay$$
$$=-4x+(5+A)y$$
$$5+A=7에서 A=2$$
 도진: $\left(\frac{4}{2}a-\frac{1}{4}\right)+\left(\frac{1}{6}a+\frac{1}{2}\right)$

$$= \frac{8a+a}{6} + \frac{-1+2}{4} = \frac{3}{2}a + \frac{1}{4}$$
$$\therefore B = \frac{3}{2} + \frac{1}{4} = \frac{7}{4}$$
$$\therefore A + 4B = 2 + 4 \times \frac{7}{4} = 9$$

유형 19 이차식의 덧셈과 뺄셈

• 40쪽 •

19 (5)

19-1 ①, ③, ⑤ **19-2**
$$\frac{7}{3}$$
 19-3 3

19-2
$$\frac{7}{2}$$

19 (주어진 식)=
$$5x^2-4x+\frac{3}{2}-2x^2-x+\frac{1}{2}$$
$$=3x^2-5x+2$$

19-2
$$\left(y^2 - \frac{1}{2}y\right) - \left(\frac{1}{2}y^2 + \frac{1}{6}y - \frac{5}{2}\right)$$

 $= y^2 - \frac{1}{2}y - \frac{1}{2}y^2 - \frac{1}{6}y + \frac{5}{2}$
 $= \frac{1}{2}y^2 - \frac{2}{3}y + \frac{5}{2}$
 $\therefore a = \frac{1}{2}, b = -\frac{2}{3}, c = \frac{5}{2}$ 이므로
 $a + b + c = \frac{1}{2} + \left(-\frac{2}{3}\right) + \frac{5}{2} = \frac{7}{3}$

19-3 (주어진 식)=
$$\frac{3(3x^2-2x+4)-(x^2+4x-7)}{3}$$
$$=\frac{9x^2-6x+12-x^2-4x+7}{3}$$
$$=\frac{8x^2-10x+19}{3}$$
$$\therefore m=-\frac{10}{3}, n=\frac{19}{3}$$
이므로
$$m+n=\left(-\frac{10}{3}\right)+\frac{19}{3}=3$$

괄호가 있는 다항식의 계산 유형 20

• 41쪽 •

20 - 4

20 (주어진 식)=
$$(x^2-3x^2-4x)+(x-x^2+x-1)$$

= $-2x^2-4x+(-x^2+2x-1)$
= $-3x^2-2x-1$
따라서 x^2 의 계수와 상수항의 합은 $-3+(-1)=-4$

20-2
$$3x^2 - [2x - 5 + \{4x + 7 - (x^2 - x + 5)\} - 6x]$$

 $= 3x^2 - \{2x - 5 + (4x + 7 - x^2 + x - 5) - 6x\}$
 $= 3x^2 - \{2x - 5 + (-x^2 + 5x + 2) - 6x\}$
 $= 3x^2 - (-x^2 + x - 3)$
 $= 3x^2 + x^2 - x + 3$
 $= 4x^2 - x + 3$

20-3 (좌변)=
$$7x+2-\{3x-4y-(-2x-6y+1)\}$$

= $7x+2-(5x+2y-1)$
= $2x-2y+3$
따라서 $a=2, b=-2, c=3$ 이므로
 $a-b+c=2-(-2)+3=7$

유형 **21** 어떤 식 구하기 (1)

● 42쪽 ●

21
$$-5x^2+6x+7$$
 21-1 $2x^2-3x+1$ **21-2** -12

21 (좌번)=
$$(4x^2-x+1)-\{2x^2+5x-(\square)\}$$

= $4x^2-x+1-2x^2-5x+\square$
= $(2x^2-6x+1)+\square$
 $(2x^2-6x+1)+\square=-3x^2+8$ 에서
 $\square=(-3x^2+8)-(2x^2-6x+1)$
= $-3x^2+8-2x^2+6x-1=-5x^2+6x+7$

21-1
$$4x^2 - x + 2 - A = 2x^2 + 2x + 1$$
이므로 $A = 4x^2 - x + 2 - (2x^2 + 2x + 1)$ $= 4x^2 - x + 2 - 2x^2 - 2x - 1$ $= 2x^2 - 3x + 1$

21-2 어떤 다항식을
$$A$$
라 하면
$$A+(-x+5y+3)=3x-2y+1에서$$

$$A=3x-2y+1-(-x+5y+3)=4x-7y-2$$
따라서 바르게 계산한 식은
$$4x-7y-2-(-x+5y+3)=5x-12y-5$$
∴ $a=5$, $b=-12$, $c=-5$ 이므로 $a+b+c=-12$

22-1 ⑤ **22-2** -10

22
$$-4x(x^2-3x+2)$$

= $-4x \times x^2 + (-4x) \times (-3x) + (-4x) \times 2$
= $-4x^3 + 12x^2 - 8x$
∴ $a = -4$, $b = 12$, $c = -8$ 이므로 $a + b + c = 0$

22-1 §
$$(4b^2+8ab-6) \times \frac{3}{2}b = 6b^3+12ab^2-9b$$

22-2
$$-2x(x+6y-5) = -2x^2 - 12xy + 10x$$

 $\therefore a = -12$
 $(5-7x+4x^2) \times \left(-\frac{1}{2}x\right) = -\frac{5}{2}x + \frac{7}{2}x^2 - 2x^3$
 $\therefore b = -2$
 $\therefore a-b = -12 - (-2) = -10$

유형 23 다항식과 단항식의 나눗셈

43쪽

23 ①

23-1
$$\frac{3}{2}$$
 23-2 -48

23 (주어진 식)=
$$\frac{4x^3y - 6x^3y^2 + 8x^4y^3}{2x^2y} = 2x - 3xy + 4x^2y^2$$
 따라서 각 항의 계수의 함은 $2 + (-3) + 4 = 3$

23-1 (주어진 식)=
$$\frac{3}{2}x-y-x+2y=\frac{1}{2}x+y=ax+by$$
 $a=\frac{1}{2},\ b=1$ 에서 $a+b=\frac{1}{2}+1=\frac{3}{2}$

23-2
$$A = (-4x^2y^2 + 8xy^3 + 2y^3) \div (-2y^2) = 2x^2 - 4xy - y$$

 $B = \left(3x^3y - \frac{1}{2}x^2y\right) \times \frac{4}{x^2} = 12xy - 2y$
 $A + B = 2x^2 - 4xy - y + 12xy - 2y = 2x^2 + 8xy - 3y$
 $\therefore a = 2, b = 8, c = -3$ 이므로 $abc = 2 \times 8 \times (-3) = -48$

유형 **24** 어떤식 구하기 (2)

● 43쪽 ●

24
$$2x-y-2$$

24-1 $-9x^3+12x^2y-30x^2$ **24-2** $-6a-3b^2+2$
24-3 $-12a^2b^2+16ab^2+20b^2$

24
$$2x(4x-2y-10)-4x \times \square = -12x$$

 $-4x \times \square = -12x - (8x^2 - 4xy - 20x)$
 $= -8x^2 + 4xy + 8x$
 $\therefore \square = \frac{-8x^2 + 4xy + 8x}{-4x} = 2x - y - 2$

24-1
$$A = (3x^2 - 4xy + 10x) \times (-3x)$$

= $-9x^3 + 12x^2y - 30x^2$

24-2 어떤 다항식을
$$A$$
라 하면
$$A \times (-2a^2b) = 12a^3b + 6a^2b^3 - 4a^2b$$
$$A = (12a^3b + 6a^2b^3 - 4a^2b) \div (-2a^2b)$$
$$= \frac{12a^3b + 6a^2b^3 - 4a^2b}{-2a^2b} = -6a - 3b^2 + 2a^2b$$

24-3
$$A \div (-2b) = -3a^2 + 4a + 5$$

 $A = (-3a^2 + 4a + 5) \times (-2b) = 6a^2b - 8ab - 10b$
 $\therefore (6a^2b - 8ab - 10b) \times (-2b)$
 $= -12a^2b^2 + 16ab^2 + 20b^2$

유형 25 사칙연산이 혼합된 식의 계산

• 44쪽 •

25 4

25 (주어진 식)

$$= \frac{12x^2y}{3xy} - \frac{6x^3y}{3xy} - 4x \times (-2x) - (-3) \times (-2x)$$

$$= 4x - 2x^2 + 8x^2 - 6x = 6x^2 - 2x$$

$$\therefore a = 6, b = -2$$
이므로 $a + b = 4$

25-1 (주어진 식)=
$$a^2+2a-a^2+5a=7a$$

25-2 (주어진 식)=
$$-x(6x-7)-(x^2-6x) imes rac{4}{x}$$
$$=-6x^2+7x-4x+24$$
$$=-6x^2+3x+24$$
$$\therefore A=-6, B=3, C=24$$
이므로 $A+B+C=-6+3+24=21$

25-3 주연:
$$A \times \frac{3}{4}y = 15x^2y - axy + 3y$$

$$A = (15x^2y - axy + 3y) \times \frac{4}{3y}$$

$$= 20x^2 - \frac{4}{3}ax + 4$$
에빈: $6x^2 + 10x - \left(20x^2 - \frac{4}{3}ax + 4\right)$

$$= -14x^2 + \left(10 + \frac{4}{3}a\right)x - 4 = -14x^2 + 18x - b$$

$$10 + \frac{4}{3}a = 18$$
에서 $\frac{4}{3}a = 8$ $\therefore a = 6$

$$-b = -4$$
에서 $b = 4$
따라서 $a + b = 6 + 4 = 10$

유형 26 도형에서의 활용

44쪽

26
$$a-2b^2$$

26-1 $62x^2+48x$ **26-2** $7a-2b$

26
$$4\pi a^3 - 8\pi a^2 b^2 = \pi \times (2a)^2 \times (\frac{1}{24})$$

 $\therefore (\frac{1}{24}) = \frac{4\pi a^3 - 8\pi a^2 b^2}{4\pi a^2} = a - 2b^2$

26-1 (직육면체의 겉넓이)
=
$$2 \times \{(2x+3) \times 3x + 3x \times 5x + (2x+3) \times 5x\}$$

= $2 \times (6x^2 + 9x + 15x^2 + 10x^2 + 15x)$
= $2 \times (31x^2 + 24x)$
= $62x^2 + 48x$

26-2 아랫변의 길이를 X라 하자.

(사다리꼴의 넓이)=
$$\frac{1}{2}$$
 × $(X+8a+3b)$ × $6ab^2$
= $45a^2b^2+3ab^3$ 이므로
 $3ab^2$ × $(X+8a+3b)=45a^2b^2+3ab^3$
 $X+8a+3b=(45a^2b^2+3ab^3)\div 3ab^2$
 $X+8a+3b=15a+b$
 $\therefore X=15a+b-(8a+3b)=7a-2b$

유형 27 식의 값 구하기

45쪽

27 식의 값을 각각 구하면

① 7 ②
$$-\frac{25}{3}$$
 ③ 13 ④ -36
⑤ $a-2b+3(a-b)=a-2b+3a-3b$
 $=4a-5b$
 $=4\times2-5\times(-3)=8+15=23$

따라서 식의 값이 가장 큰 것은 ⑤이다.

27-1 (주어진 식)=
$$y-4x+x-3y$$

= $-3x-2y$
= $-3\times5-2\times(-3)$
= $-15+6=-9$

27-2 (주어진 식)=
$$3x-(4x^2+4xy-5x^2)-6xy$$

= $3x+x^2-4xy-6xy$
= $x^2-10xy+3x$ ··· \bigcirc
 $x=-1, y=2$ 를 \bigcirc 에 대입하면 $1+20-3=18$

27-3 (1)
$$S=\pi r^2$$
을 $V=\frac{1}{3}Sh$ 에 대입하면
$$V=\frac{1}{3}\times\pi r^2\times h=\frac{1}{3}\pi r^2 h$$
 (2) $r=5,\ h=12$ 를 $V=\frac{1}{3}\pi r^2 h$ 에 대입하면
$$V=\frac{1}{3}\times\pi\times 5^2\times 12=100\pi$$

27-4 (주어진 식) =
$$\frac{2x^2y^2z - 3xy^3z^2}{6xy^2z} + \frac{24x^3y^2z^3 - 4x^5yz^2}{-8x^3yz^2}$$
$$= \frac{1}{3}x - \frac{1}{2}yz - 3yz + \frac{1}{2}x^2$$
$$= \frac{1}{3}x - \frac{7}{2}yz + \frac{1}{2}x^2$$
$$= \frac{1}{3} \times (-3) - \frac{7}{2} \times (-1) \times \frac{1}{2} + \frac{1}{2} \times (-3)^2$$
$$= -1 + \frac{7}{4} + \frac{9}{2} = \frac{21}{4}$$

서술형 다지기

• 46∼4**7**쪽 •

1-1 1단계
$$3x^2-4x+5$$
, $3x^2-4x+5$, $-4x^2+8$
2단계 $-4x^2+8$, $-x^2-4x+13$
3단계 -1 , -4 , 13 , 8

1-2 (

2-1 1단계
$$\frac{2}{3}$$
, $\frac{1}{3}$, $\frac{3}{ab}$, $2b$, a 2단계 2 , 1 , 39

2-2 -1

3-1
$$2x^2+4x-8$$
 3-2 $-x^2-6x+1$ **4-1** $6a^2+23ab$ **4-2** $55ab-25b^2$

1-2 어떤 식을
$$A$$
라 하면 $A \div \frac{2}{3}ab^2 = 3ab - 9a + 6b$

$$A = (3ab - 9a + 6b) \times \frac{2}{3}ab^2 = 2a^2b^3 - 6a^2b^2 + 4ab^3 \cdots$$

$$A \times \frac{2}{3}ab^2 = (2a^2b^3 - 6a^2b^2 + 4ab^3) \times \frac{2}{3}ab^2$$

$$= \frac{4}{3}a^3b^5 - 4a^3b^4 + \frac{8}{3}a^2b^5 \qquad \cdots$$
따라서 각 항의 계수의 합은 $\frac{4}{2} - 4 + \frac{8}{2} = 0 \qquad \cdots$

채점 요소	배점
① 어떤 식 구하기	2점
바르게 계산한 식 구하기	2점
❸ 각 항의 계수의 합 구하기	2점
총점	6점

2-2 식을 간단히 하면

$$\frac{4x^2+6xy}{-2x}-\frac{12y^2-15xy}{3y}$$

$$=-2x-3y-4y+5x$$

$$=3x-7y \quad \cdots \quad \bigcirc \qquad \qquad \cdots \quad \mathbf{1}$$
 식 \bigcirc 에 $x=\frac{1}{3}$, $y=\frac{2}{7}$ 를 대입하면

$$3 \times \frac{1}{3} - 7 \times \frac{2}{7} = 1 - 2 = -1$$
 ... 2

채점 요소	배점
● 주어진 식 간단히 하기	3점
② 주어진 식의 값 구하기	2점
총점	5점

3-1 1단계

$$x^{2}-3x+8+A=2x^{2}+5x-7$$
이므로
 $A=2x^{2}+5x-7-(x^{2}-3x+8)$
 $=2x^{2}+5x-7-x^{2}+3x-8$
 $=x^{2}+8x-15$

2단계

$$5x^2 - 3x + 1 - B = 4x^2 + x - 6$$
이므로
 $B = 5x^2 - 3x + 1 - (4x^2 + x - 6)$
 $= 5x^2 - 3x + 1 - 4x^2 - x + 6$
 $= x^2 - 4x + 7$

3단계

$$A+B=(x^2+8x-15)+(x^2-4x+7)$$
$$=2x^2+4x-8$$

3-2 현우가 구한 식 $A+(-x^2+3x+4)=B$ 에서

$$A=2B$$
이므로 $2B+(-x^2+3x+4)=B$... **①**
∴ $B=x^2-3x-4$... **②**

따라서 승연이가 얻은 결과는

$$B - (2x^2 + 3x - 5) = x^2 - 3x - 4 - 2x^2 - 3x + 5$$
$$= -x^2 - 6x + 1 \qquad \cdots 3$$

채점 요소	배점
$lacktriangle$ 현우가 만든 식에 $A\!=\!2B$ 대입하기	2점
② 식 <i>B</i> 구하기	2점
❸ 승연이가 얻은 결과 구하기	3점
총점	7점

4-1 1단계

(꽃받의 가로의 길이)=3a+4b-5b=3a-b

2단계

(꽃밭의 세로의 길이)=5a-2a=3a

3단계

(구하는 넓이)=
$$(3a+4b) \times 5a - (3a-b) \times 3a$$

= $15a^2 + 20ab - 9a^2 + 3ab$
= $6a^2 + 23ab$

4-2 (포장지의 가로의 길이)=2(2a-b)+3a-b

$$=4a-2b+3a-b$$

$$=7a-3b \cdots \bullet$$

(포장지의 세로의 길이)=5b+5b=10b

... 2 따라서 포장지의 남은 부분의 넓이는

$$(7a-3b) \times 10b - (3a-b) \times 5b$$

$$=70ab-30b^2-15ab+5b^2$$

$$=55ab-25b^2$$

채점 요소	배점
● 포장지의 가로의 길이 구하기	2점
포장지의 세로의 길이 구하기	2점
③ 포장지의 남은 부분의 넓이 구하기	3점
총점	7점

48쪽

... ❸

02 10 **03** 17 **04** $240x^2y - 160xy^2$

01 (i) n이 짝수일 때

(주어진 식)=
$$x^n \times (-1) \times x^{n+2} - (-1) \times 1$$

 $-x^{n-1} \times x^{n+3} \times (-1)$
 $=-x^{2n+2} + 1 + x^{2n+2}$

(ii) n이 홀수일 때

(주어진 식)=
$$-x^n \times 1 \times (-x^{n+2}) - 1 \times (-1)$$
$$-x^{n-1} \times x^{n+3} \times 1$$
$$=x^{2n+2} + 1 - x^{2n+2}$$

따라서 (i), (ii)에 의하여 주어진 식을 간단히 하면 1이다.

02 (7)
$$3^{201} = 3^{200} \times 3 = 3X$$

$$3^{199} = 3^{200} \times \frac{1}{3} = \frac{1}{3}X$$

$$\therefore 3^{201} - 3^{199} = 3X - \frac{1}{3}X = \frac{8}{3}X$$

(+)
$$3000 = 5^3 \times 24$$

 $5^b \times (5^c - 1) = 5^3 \times 24$
 $5^b = 5^3$ 에서 $b = 3$
 $5^c - 1 = 24$ 에서 $5^c = 25 = 5^2$ $\therefore c = 2$
 $\therefore ab + c = \frac{8}{2} \times 3 + 2 = 10$

03 [식 1]에 2배를 한 후 [식 2]와 더하면 4M+3N이 된다. = 2(M+2N)+2M-N=2M+4N+2M-N=4M+3N

$$4M+3N=2(x^{2}+4xy+2y^{2})+2x^{2}-2xy+3y^{2}$$

$$=2x^{2}+8xy+4y^{2}+2x^{2}-2xy+3y^{2}$$

$$=4x^{2}+6xy+7y^{2}$$

따라서 모든 항의 계수의 합은 4+6+7=17

오른쪽 그림과 같은 모양의 입체도형음 만드는 데 필요한 쌓기나무의 개수는 10개이다.

직육면체 모양의 쌓기나무 한 개의 부 피는

 $2x \times (3x-2y) \times 4y$

$$=8xy(3x-2y)$$

$$=24x^2y-16xy^2$$

따라서 쌓은 쌓기나무 전체의 부피는

$$10 \times (24x^2y - 16xy^2) = 240x^2y - 160xy^2$$

Ⅲ 일차부등식과 연립일차방정식

1 일차부등식

▲ 개념 다지기

01 (1) 5x - 3 < x

(2) $2x+5 \le x-3$

■ 51쪽 ●

(3) 2(a-1) > 8

(4) $x+10 \ge 2x$

02 (1) -2, -1 (2) 0, 1, 2

03 (1) \geq (2) \geq (3) \leq (4) \geq (5) \geq (6) \leq

Q4 (1) \times (2) \bigcirc (3) \times (4) \times (5) \bigcirc

05 (1) x < 2 (2) $x \ge -2$ (3) $x \le -1$ (4) x < 4

06 (1) $x \ge 4$ (2) x > -2 (3) x > 15

02 (1) x = -2일 때, $2 \times (-2) + 3 \le 1$: 참

x=-1일 때 $2\times(-1)+3\leq 1$:참

x=0, 1, 2일 때 모두 거짓

(2) x = -2, -1일 때 모두 거짓

x=0일 때 $3\times 0+5>1-0$:참

x=1일 때, 3×1+5>1-1:참

x=2일 때, $3\times 2+5>1-2$: 참

03 (3) $-7a \le -7b$: $-7a+2 \le -7b+2$

(4) $4a \ge 4b$:: $4a - 10 \ge 4b - 10$

(5) $a-1 \ge b-1$: $2(a-1) \ge 2(b-1)$

(6) $-\frac{a}{2} \le -\frac{b}{2}$ $\therefore -\frac{a}{2} - 5 \le -\frac{b}{2} - 5$

- **04** (1) 3>0 → 좌변이 일차식이 아니다.
 - (2) -2x-9<0 **→** 좌변이 일차식이다.
 - (3) -11≤0 → 좌변이 일차식이 아니다.
 - $(4) x^2 + 3x + 2 \ge 0$ **>** 좌변이 일차식이 아니다.
 - (5) 18*x*−1<0 → 좌변이 일차식이다.



06 (1) 괄호를 풀면 $15-3x \le 2x-4-1$. $-5x \le -20$

 $\therefore x \ge 4$

(2) 양변에 6을 곱하면 2(x-1)-9x<122x-2-9x<12, -7x<14 : x>-2

(3) 양변에 10을 곱하면 x+30 < 2x+15. -x < -15 $\therefore x > 15$

유형 01 부등식의 뜻

• 52쪽 **•**

01 ②

01-1 ①, ⑤ **01-2** 13

- 01 ② 등호를 사용하여 나타낸 식이므로 부등식이 아니다.
- 01-2 등호가 있는 식은 ㄹ. ㅁ이므로 등식은 2개이다.

부등호가 있는 식은 ㄴ, ㄷ, ㅂ이므로 부등식은 3개이다.

 $\therefore b=3$

따라서 $2a+3b=2\times2+3\times3=13$

유형 02 문장을 부등식으로 나타내기

52쪽

02 $4x + 5100 \le 8500$

02-1 ③ **02-2** ④

- **02-1** x의 2배에서 6을 뺀 수는 2x-6x에서 3을 뺀 수의 3배는 3(x-3)
 - $\therefore 2x 6 > 3(x 3)$
- **02-2** ⓐ $b-a \le 14$

유형 03 부등식의 해

53쪽

03 ㄱ. ㄹ

03-1 2개 **03-2** ④

03 방정식 2x+7=3에서 2x=-4, x=-2x=-2를 각 부등식에 대입하면

 $\neg . -5 \times (-2) + 2 \le 13 \Rightarrow$ 참

 $L. 2 \times (-2) + 7 > 2 - (-2) \implies 거짓$

□ 2(-2+1)<-2 → 거짓

ㄹ. 2×(-2)-1≥3×(-2)-1 **⇒** 참 따라서 x=-2를 해로 가지는 부등식은 그 로이다

- **03-1** 부등식의 x에 -1, 0, 1, 2, 3을 차례로 대입했을 때, 부등 식이 참이 되면 된다 따라서 x=2. 3일 때 참이므로 주어진 부등식을 만족시키는 x의 개수는 2개이다.
- **03-2** x=-1, 0, 1을 주어진 부등식에 각각 대입하여 해를 구하면
 - ① x = -1. 0. 1 ② x = 1
 - ③ x = 0.1
- ④ 해가 없다
- ⑤ x = -1.0

유형 04 부등식의 성질

● 53쪽 ●

04 ③

04-1 ② 04-2 2, 5

- **04** (1), (2), (4), (5) < . (3) >
- **04-2** $2-3a \ge 2-3b$ 의 양변에서 2를 빼면 $-3a \ge -3b$ 양변을 -3으로 나누면 $a \le b$
 - (5) $a \le b$ 에서 양변에 -1을 곱하면 $-a \ge -b$ 양변에 b를 더하면 $b-a \ge 0$

유형 05 부등식의 성질을 이용하여 식의 값의 범위 구하기 • 54쪽 •

05 ③

05-1 20 **05-2** -1 **05-3** -18 < 3x - 2y < 14

- **05** -2 < x < 3의 각 변에 -5를 곱하면 -15 < -5x < 10따라서 각 변에 3을 더하면 $-12 < -5x + 3 \le 13$
- **05-1** $-1 < a \le 4$ 에서 $-4 < 4a \le 16$ $\therefore -9 < 4a - 5 \le 11$ $\therefore m = -9, n = 11$ 이므로 n - m = 11 - (-9) = 20
- **05-2** $-2 \le 1 3x < 10$ 의 각 변에서 1을 빼면 $-3 \le -3x < 9$ 각 변을 -3으로 나누면 $-3 < x \le 1$ M=1, m=-2이므로 M+m=-1
- **05-3** -2 < x < 4에서 -6 < 3x < 12-1 < y < 6에서 -12 < -2y < 2따라서 -6+(-12)<3x+(-2y)<12+2이므로 -18 < 3x - 2y < 14

유형 06 일차부등식의 뜻

• 54쪽 •

06 (1). (4)

06-1 (4) 06-2 강인

- **06** ① *x*+3>0 → 좌변이 일차식이다
 - ② $x^2 + x 6 < 0 \Rightarrow$ 좌변이 일차식이 아니다.
 - ③ -8≤0 → 좌변이 일차식이 아니다.
 - ④ -6x-2≥0 **→** 좌변이 일차식이다
 - (5) $\frac{1}{x} 2x 4 \ge 0$ \Rightarrow 좌변에서 분모에 미지수가 있으므로 일차식이 아니다
- **06-1** 3(x-2) > ax-7 |x| 3x-6 > ax-7, (3-a)x+1>0이 식이 일차부등식이 되기 위해서는 $3-a \neq 0$ 이어야 하므로 $a \neq 3$
- **06-2** 도현: $2(x-1) \le 3x+7$

지선: 200+600x<5000

강인: $\pi x^2 \ge 16\pi$ 로희: 2x+9>40

유형 07 일차부등식의 풀이

55쪽

07 ③

07-1 (4) **07-2** 8개 **07-3** *x*≤4

- **07** ① x < 1② x > 1③ x < -1(4) x > -1
 - (5) x > 1
- **07-1** 각 부등식을 풀면 ④ x>4이고 ①, ②, ③, ⑤는 x<4
- **07-2** 부등식 -5x+11>-3x-5를 풀면 x<8따라서 x는 음이 아닌 정수이므로 x=0, 1, 2, 3, 4, 5, 6, 7의 8개이다.
- **07-3** 일차방정식 4y-6=3(y-1)을 풀면 y=3이므로 a=3x의 a배에 -3을 더하면 9보다 크지 않다. $\Rightarrow ax-3 \le 9$ $3x - 3 \le 9$, $3x \le 12$: $x \le 4$

유형 08 일차부등식의 해를 수직선 위에 나타내기 • 55쪽 •

08 ①

08-1 풀이 참조 08-2 ⑤

- **08** 부등식 2*x*−4≤*x*−1을 풀면 *x*≤3
- **08-1** 2x+1>4x-1에서 -2x>-2이므로 x<1

- **08-2** ① -4x+3x>3-5, -x>-2 $\therefore x<2$
 - ② $5x-x \ge 2-4$, $4x \ge -2$ $\therefore x \ge -\frac{1}{2}$
 - ③ 3x+4x>1+6, 7x>7 : x>1
 - 4 3x 5x < 14 + 2, -8x < 16 $\therefore x > -2$
 - (5) −6x+x>1+9. −5x>10 $\therefore x$ <−2

유형 09 괄호가 있는 일차부등식의 풀이

56쪽

09 (3)

09-1 5 09-2 6

- **09** $2(x-1) \ge 4x-16$ $2x-2 \ge 4x-16, -2x \ge -14$ $\therefore x \le 7$ $\therefore a = 7$
- **09-1** 괄호를 풀면 5-4-3x<-2x+6, -x<5 ∴ x>-5
- 09-2 괄호를 풀면 24x-36≤-6x+36+18
 30x≤90 ∴ x≤3
 자연수 x는 1, 2, 3이므로 구하는 함은 1+2+3=6이다.

유형 10 계수가 분수 또는 소수인 일차부등식의 풀이 • 56쪽 •

10 - 5

10-1 x < 6 **10-2** ④ **10-3** 3 **10-4** 5

- 9년에 20을 곱하면 5(x-2)-4(2x-3)<20
 5x-10-8x+12<20, -3x<18
 ∴ x>-6
 따라서 x의 값 중 가장 작은 정수는 -5이다.
- **10-1** 0.25x+2>0.6x-0.1의 양변에 100을 곱하면 25x+200>60x-10, -35x>-210 ∴ x<6
- **10-2** $\frac{1}{9}x + \frac{1}{9} \le \frac{5}{6}x \frac{4}{3}$ 의 양변에 18을 곱하면 $2x + 2 \le 15x 24$, $-13x \le -26$ $\therefore x \ge 2$ 따라서 수직선 위에 나타내면 ④와 같다.

10-3 $\frac{x+1}{3}$ $-1 > \frac{1}{2}x - \frac{5}{3}$ 의 양변에 6을 곱하면

2(x+1)-6>3x-10, 2x+2-6>3x-10, -x>-6

 $\therefore x < 6 \qquad \therefore a = 6$

 $0.3(x-2) \ge -3 - 0.5x$ 의 양변에 10을 곱하면

 $3(x-2) \ge -30-5x$, $3x-6 \ge -30-5x$

 $8x \ge -24$ $\therefore x \ge -3$ $\therefore b = -3$

a+b=6+(-3)=3

10-4 일차부등식 $\frac{1}{2}(2x-5) < \frac{1}{3}(x+3)$ 에서

양변에 6을 곱하면 3(2x-5) < 2(x+3)

6x-15 < 2x+6, 4x < 21

 $\therefore x < \frac{21}{4}$

이때 자연수 x는 1, 2, 3, 4, 5의 5개이다. $\therefore k=5$

유형 **11** 일차부등식의 해가 주어질 때, 미지수의 값 구하기 • 57쪽 •

11 ⑤

11-1 1 **11-2** -2 **11-3** (1) 1, 2 (2) 2

- 11 $3x-2 \ge -x+a$ $4x \ge a+2$ $\therefore x \ge \frac{2+a}{4}$
 - 이 부등식의 해가 $x \ge 2$ 이므로 $\frac{2+a}{4} = 2$

2+a=8 $\therefore a=6$

 $\therefore 2a+3=2\times 6+3=15$

11-1 주어진 일차부등식의 양변에 12를 곱하면 $3(x-a)-12 \le 4x$, $3x-3a-12 \le 4x$, $-x \le 12+3a$ ∴ $x \ge -12-3a$

해가 $x \ge -15$ 이므로 -12-3a = -15 $\therefore a = 1$

11-2 $\frac{1}{5}(x+1) > 0.3x - a$ 의 양변에 10을 곱하면

2(x+1) > 3x-10a

2x+2>3x-10a

-x > -10a - 2

- $\therefore x < 10a + 2$
- 이 부등식의 해가 x < -18이므로 10a + 2 = -18
- $\therefore a = -2$
- **11-3** (1) a-3<0이고 a는 자연수이므로 a=1 또는 a=2

(2)
$$x < -\frac{b}{a-3}$$
 에서 $-\frac{b}{a-3} = \frac{1}{2}$, $2b = 3-a$ $a = 1$ 에, $b = 1$

$$a=$$
2일 때, $b=\frac{1}{2}$
따라서 a , b 는 자연수이므로 $a=1$, $b=1$
 $\therefore a+b=2$

유형 12 x의 계수가 미지수인 일차부등식의 풀이 • 58쪽 ©

12 $x \le 2$

12-2 $x \le 3$ **12-3** -4**12-1** (4)

- **12** $ax-2a \ge 5(x-2)$ 에서 $ax-2a \ge 5x-10$. $(a-5)x \ge 2a-10$ a-5 < 0이므로 a-5로 나누면 부등호의 방향이 바뀐다. $\leq x \leq \frac{2a-10}{a-5}, x \leq \frac{2(a-5)}{a-5}$ $\therefore x \leq 2$
- **12-1** a < 0에서 -3a > 0이므로 -3ax < 9에서 양변을 -3a로 나누면 $x < -\frac{3}{a}$
- **12-2** $(a-1)x \le 3a-3$ 에서 $(a-1)x \le 3(a-1)$ a-1>0이므로 양변을 a-1로 나누면 부등호의 방향이 그

$$\leq$$
, $x \leq \frac{3(a-1)}{a-1}$ $\therefore x \leq 3$

12-3 a(x+3) > 5x+15에서 ax+3a > 5x+15ax-5x>-3a+15, (a-5)x>-3(a-5)이때 a < 5에서 a - 5 < 0이므로 $x < \frac{-3(a-5)}{a-5}$ $\therefore x < -3$ 따라서 x의 값 중 가장 큰 정수는 -4이다.

일차부등식의 해 중 가장 큰 값(또는 작은 값) 이 주어질 때 미지수의 값 구하기

13 3

13-1 2 **13-2** 1≤*a*<3

13 주어진 부등식의 양변에 6을 곱하면 $4x - 3x + 6 \ge 6a$ $x \ge 6a - 6$ 이때 일차부등식의 해 중 가장 작은 수가 12이므로

6a - 6 = 12 : a = 3

- **13-1** 가장 큰 수가 3이므로 부등식의 해는 $x \le 3$ $ax+4 \ge 4x-2$ 에서 $(a-4)x \ge -6$ 해가 $x \le 3$ 이므로 a - 4 < 0이때 $x \le -\frac{6}{a-4}$ 에서 $-\frac{6}{a-4} = 3$
- **13-2** 2x+2-a>4x-5이|x|-2x>a-7 $\therefore x < \frac{7-a}{2}$ 해 중 가장 큰 자연수가 2이므로 오른쪽 그림에서 $2 < \frac{7-a}{2} \le 3, 4 < 7-a \le 6,$ $-3 < -a \le -1$: $1 \le a < 3$

두 일차부등식의 해가 서로 같을 때 • 59쪽 • 미지수의 값 구하기

14 (1)

14-1 -14 **14-2** 14

- **14** x-3 < 2x+5에서 -x < 8 $\therefore x > -8$ 2(1+x) > 3a+1에서 2+2x > 3a+1, 2x > 3a-1 $\therefore x > \frac{3a-1}{2}$ $\frac{3a-1}{2} = -8$, 3a-1 = -16, 3a = -15 $\therefore a = -5$
- **14-1** $0.5x-1<\frac{1}{6}(x+2)$ 의 양변에 6을 곱하면 3x-6 < x+2, 2x < 8 : x < 46x+a < 3x-2에서 3x < -a-2 $\therefore x < \frac{-a-2}{2}$ 해가 서로 같으므로 $4 = \frac{-a-2}{3}$ $\therefore a = -14$
- **14-2** $-2 < \frac{x+3}{2} < 4$ 의 각 변에 2를 곱하면 -4 < x+3 < 8각 변에서 3을 빼면 -7 < x < 5a < -2x + 5 < b에서 a - 5 < -2x < b - 5 $-\frac{b-5}{2} < x < -\frac{a-5}{2}$

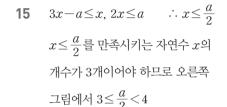
$$-\frac{b-5}{2}$$
=-7, $-\frac{a-5}{2}$ =5이므로 a =-5, b =19
 $\therefore a+b$ =14

유형 15

일차부등식의 자연수인 해의 개수가 주어질 때, 59% 5 미지수의 값 구하기

15 (5)

15-1 ② **15-2** a < 2



∴ 6≤*a*<8

15-1 2 < x < 3a + 2를 만족시키는 정수 x는 3, 4, 5이므로 조건 을 만족시키는 a의 범위는 $5 < 3a + 2 \le 6$ 이어야 한다.

$$\stackrel{\text{\tiny def}}{=}$$
, $3 < 3a \le 4$ $\therefore 1 < a \le \frac{4}{3}$

15-2 주어진 일차부등식의 양변에 4를 곱하면 $x-a \le 2(x-1), x-a \le 2x-2, -x \le a-2$ $\therefore x \ge 2-a$ x는 모두 양수이므로 2-a>0 $\therefore a<2$

60~61쪽

1-2 -8

2단계
$$-1$$
, $2-3a$, -1 , $\frac{5}{3}$ 3단계 $\frac{5}{3}$, 6

2-2
$$-1 < a \le -\frac{1}{2}$$

4-1 6

1-2 $-4 < x \le 6$ 에서 각 변에 $-\frac{1}{2}$ 을 곱하면 $-3 \le -\frac{1}{2}x < 2$

또, 각 변에서 3을 빼면 $-6 \le -\frac{1}{2}x - 3 < -1$... ①

범위에 속하는 정수 중 가장 큰 값은 -2, 가장 작은 값 은 -6이므로 M = -2, m = -6

$$M+m=-2+(-6)=-8$$

...

채점 요소	배점
$lue{f 0} - rac{1}{2}x - 3$ 의 범위 구하기	3점
② M+m의 값 구하기	2점
총점	5점

2-2 2(x-5)+6<3x+2a에서 2x-10+6<3x+2a

-x < 2a + 4 : x > -2a - 4

x의 값 중 가장 작은 정수가 -2이므로

오른쪽 그림에서

$$1 \le -2a < 2$$

$$\therefore -1 < a \le -\frac{1}{2}$$

🚯		. 6
---	--	-----

... ①

채점 요소	배점
● 부등식 2(x-5)+6<3x+2a의 해 구하기	2점
② 해의 조건을 만족시키는 a에 관한 부등식 세우기	2점
③ <i>a</i> 의 값의 범위 구하기	2점
총점	6점

3-1 1단계

4x+10>2에서 4x>-8 $\therefore x>-2$

2단계

$$7-4x < a-2x$$
에서 $-2x < a-7$
$$\therefore x > \frac{7-a}{2}$$

두 부등식의 해가 같으므로 $\frac{7-a}{2} = -2$

양변에 2를 곱하면 7-a=-4

 $\therefore a=11$

3-2 $\frac{3}{2}x+7 \le 4x+2$ 에서 양변에 2를 곱하면

 $3x+14 \le 8x+4$, $-5x \le -10$: $x \ge 2$ $x+6 \ge a(x-3)-5$ 에서 $x+6 \ge ax-3a-5$

 $(1-a)x \ge -3a-11$

$$\therefore x \ge \frac{-3a - 11}{1 - a} (\because a < 1) \qquad \cdots \bullet$$

두 부등식의 해가 같으므로
$$\frac{-3a-11}{1-a}$$
=2 ... **2**

$$-3a-11=2-2a, -a=13$$

채점 요소	배점
① 부등식의 해 구하기	3점
② a에 대한 방정식 세우기	2점
③ <i>a</i> 의 값 구하기	2점
총점	7점

4-1 1단계

 $\frac{x}{5} - \frac{4-x}{2} < x+k$ 의 양변에 10을 곱하면 $2x - 5(4-x) < 10x + 10k, \quad -3x < 20 + 10k$ $\therefore x > -\frac{20+10k}{3}$

2단계

x의 값 중 음의 정수의 개수가 2개이려면 $-3 \le -\frac{20+10k}{3} < -2$

 $6 < 20 + 10k \le 9$, $-14 < 10k \le -11$ $\therefore -1.4 < k \le -1.1$

3단계

$$20(b-a)=20\{-1.1-(-1.4)\}=6$$

4-2 $\frac{x-3k}{4} > 0.5x + 2$ 에서

 $-3k-8 \le 1$

양변에 4를 곱하면 x-3k>2x+8 -x>3k+8 $\therefore x<-3k-8$

이때 일차부등식을 만족시키는 자연수 x의 값이 존재하지 않으므로

 $-3k \le 9$ $\therefore k \ge -3$

... 2

따라서 상수 k의 값 중 가장 작은 정수는 -3이다. ··

채점 요소	배점
1 부등식의 해 구하기	2점
$oldsymbol{0}$ 상수 k 의 값의 범위 구하기	3점
$oldsymbol{0}$ 가장 작은 정수 k 의 값 구하기	2점
총점	7점

▲ 개념 다지기

.

01 12-x, 500x, 50, 14, 7, 7 **02** 1, 2, 3 **03** 17

04 33일 **05** 8 cm **06** 풀이 참조. 10 km

07 20, 300, 180, 180

- 어떤 자연수를 x라 하면
 5x+7<25, 5x<18 ∴ x<18/5
 따라서 자연수 x는 1, 2, 3이다.
- **03** 두 정수를 *x*−4, *x*라 하면 *x*−4+*x*<32, 2*x*<36 ∴ *x*<18 따라서 *x*의 최댓값은 17
- **04** 저축한 날 수를 *x*일이라 하면 12500+1000*x*>45000 10*x*>325 ∴ *x*>32.5
- 05 삼각형의 높이를 x cm라 하면 $\frac{1}{2} \times 10 \times x \ge 40, \ 5x \ge 40 \qquad \therefore \ x \ge 8$ 따라서 8 cm 이상이어야 한다.
- O6 거리 속력 시간 올라갈 때 x km 4 km/시 $\frac{x}{4}$ 시간 내려올 때 x km 5 km/시 $\frac{x}{5}$ 시간

 $\frac{x}{4} + \frac{x}{5} \le \frac{9}{2}$ 에서 양변에 20을 곱하면 $5x + 4x \le 90, \ 9x \le 90$ $\therefore x \le 10$ 따라서 최대한 $10 \ \mathrm{km}$ 까지 올라갈 수 있다.

07 $\frac{20}{100} \times 300 + x \ge \frac{50}{100} \times (300 + x)$ 에서 양변에 10을 곱하면 $600 + 10x \ge 1500 + 5x$ $5x \ge 900$ ∴ $x \ge 180$ 따라서 최소 180 g의 소금을 더 넣어야 한다.

유형 다지기

유형 16 수에 대한 문제

● 64쪽 ●

16 34, 35, 36

16-1 24 **16-2** 300, 301, 302 **16-3** 15

16 연속하는 세 자연수를 x-1, x, x+1이라 하면
 (x-1)+x+(x+1)<108, 3x<108 ∴ x<36
 따라서 가장 큰 세 자연수는 34, 35, 36이다.

- 16-1 연속하는 두 홀수를 x-2, x라 하면 $4(x-2)-6\le 3x$, $4x-14\le 3x$ $\therefore x\le 14$ 두 홀수의 합이 최대가 되려면 x=13 두 홀수의 합의 최댓값은 11+13=24
- 16-2 연속하는 세 자연수를 x-1, x, x+1이라 하면 (x-1)+x+(x+1)>900
 3x>900 ∴ x>300
 따라서 가장 작은 세 자연수는 300, 301, 302이다.
- **16-3** 주사위를 던져 나온 눈의 수를 x라 하면 5x>x+14, 4x>14 $\therefore x>\frac{7}{2}$ 따라서 조건을 만족시키는 주사위의 눈의 합은 4+5+6=15

유형 17 평균에 대한 문제

• 64쪽 •

17 86점

17-1 7점

∴ *x*≥86

- 17 네 번째 시험 성적을 x점이라 하면 $(평균) = \frac{81 + 85 + 88 + x}{4} \ge 85$
- **17-1** 안마에서 얻은 점수를 x점이라 하면 $\frac{8+9.4+8.5+9+9.1+x}{6} \ge 8.5$ 에서

 $44+x \ge 51$ $\therefore x \ge 7$ 따라서 7점 이상을 얻어야 한다.

유형 18 최대 개수에 대한 문제

● 65쪽 ●

18 ③

18-1 10개 **18-2** 5송이 **18-3** 6개

- 18 1000x+800×6≤9000 1000x≤4200 ∴ x≤4.2 따라서 초콜릿은 4개까지 살 수 있다.
- **18-1** 조각 케이크를 *x*개 넣는다고 하면 2400*x*+1000≤25000 ∴ *x*≤10

18-2 장미를 x송이라 하면 튤립은 (20-x)송이

 $800(20-x)+1000x \le 17000$

 $8(20-x)+10x \le 170$

 $160 - 8x + 10x \le 170$

 $2x \le 10$ $\therefore x \le 5$

이때 x는 자연수이므로 장미는 최대 5송이까지 살 수 있다.

18-3 배의 개수를 x개라 하면 사과의 개수는 (15-x)개

 $500(15-x)+900x+2000 \le 12000$

 $4x \le 25$ $\therefore x \le \frac{25}{4}$

이때 x는 자연수이므로 배는 최대 6개까지 살 수 있다.

유형 19 추가 요금에 대한 문제

65쪽

19 35개

19-1 70분

19 다운로드할 수 있는 음원 수를 x개라 하면

25개까지 5000원에 이용할 수 있고 26개 이상부터는

300원씩 추가 요금을 내야하므로

 $5000+300\times(x-25)\leq8000$

 $300x - 2500 \le 8000$

 $3x \le 105$ $\therefore x \le 35$

19-1 주차한 지 1시간 이후에 추가되는 요금은 1분당 200원이다.

x분 동안 주차한다고 하면

 $5000 + 200(x - 60) \le 7000$

 $\therefore x \leq 70$

유형 20 유리한 방법을 선택하는 문제

● 66쪽 ●

20 16자루

20-1 13편 20-2 80분 20-3 41명

20 볼펜을 x자루 산다고 하면 동네 문구점에서 살 때 드는 비용은 1000x원, 대형 할인점에서 살 때의 비용은

(800x+3000)원이므로

1000x > 800x + 3000

200x > 3000 : x > 15

따라서 16자루 이상 살 경우 대형 할인점에서 사는 것이 유 리하다. **20-1** 1년 동안 *x*편을 시청한다고 하면

$$2000 \times x > \left(2000 \times \frac{60}{100}\right)x + 10000$$

2000x > 1200x + 10000

$$x > \frac{25}{2}$$

따라서 13편 이상 본다면 회원으로 가입하는 것이 유리하다.

20-2 한 달 동안의 통화 시간을 x분이라 하면 1분은 60초이므로 $18000 + 6 \times 40x \le 30000 + 6 \times 15x$

 $18000 + 240x \le 30000 + 90x$

 $150x \le 12000$ $\therefore x \le 80$

따라서 한 달에 최대 80분까지 통화하면 손해가 없다.

20-3 입장하는 사람 수를 x명이라 하면

x명이 입장할 때는 입장료는 2000x원

50명 단체 입장권을 구입하여 입장할 때 입장료는

$$2000 \times 50 \times \frac{80}{100} = 80000(원)$$
이므로

2000x > 80000

따라서 41명 이상이면 50명 단체 입장권을 구입하는 것이 더 유리하다.

예금액에 대한 문제

• 66쪽 •

21 6개월 후

21-1 9개월 후 **21-2** 6

21 x개월 후 재경이의 예금액은 (2000+3000x)원이고 지후 의 예금액은 (5000+800x)원이다. 재경이의 예금액이 지 후의 예금액의 2배 이상이 되는 것이므로

 $2000 + 3000x \ge 2(5000 + 800x)$ $\therefore x \ge \frac{40}{7}$

따라서 재경이의 예금액이 지후의 예금액의 2배가 되는 것은 (현재를 기준으로) 6개월 후부터이다.

21-1 x개월 후에 선물을 살 수 있다고 한다면

 $(70000+4000x)+(56000+5000x) \ge 200000$

$$\therefore x > \frac{74}{9}$$

따라서 9개월 후에 어버이날 선물을 살 수 있다.

21-2 $10000 + 20000a > 30000 + 4000 \times 20$

10000 + 20000a > 110000

2a > 10 $\therefore a > 5$

따라서 a는 자연수이므로 a의 최솟값은 6이다.

거리, 속력, 시간에 대한 문제 - 도중에 속력이 변하는 경우

22 3 km

22-1 6 km

시속 4 km로 뛴 거리를 x km라 하면 시속 3 km로 걸은 거리는 (8-x) km이므로

$$\frac{8-x}{3} + \frac{x}{4} \le \frac{145}{60}$$

$$4(8-x)+3x \le 29$$
, $32-4x+3x \le 29$

$$-x \le -3$$
 $\therefore x \ge 3$

22-1 A 지점에서 자전거가 고장 난 지점까지의 거리를 x km라 하면

$$\frac{x}{12} + \frac{20-x}{4} \le 4$$
, $x + 3(20-x) \le 48$, $-2x \le -12$

따라서 자전거가 고장 난 지점은 A 지점에서 최소 6 km 이 상 떨어진 곳이다.

유형 **23** 거리, 속력, 시간에 대한 문제 - 왕복에 대한 문제 • 67쪽 •

23 제1전망대

23-1 20분 **23-2** $\frac{5}{2}$ km

올라갈 거리를 x km라 하면 올라가는 데 걸리는 시간은 $\frac{x}{2}$

시간, 내려오는 데 걸리는 시간은 $\frac{x}{3}$ 시간이므로

$$\frac{x}{2} + \frac{x}{3} \le 3$$
 $\therefore x \le 3.6$

따라서 최대 거리가 3.6 km이므로 제1전망대까지 갔다 올 수 있다

23-1 갈 때 걸린 시간은 $\frac{4800}{60}$ = 80(분)

올 때 걸린 시간은 $\frac{4800}{80}$ =60(분)

B 지점에서 x분 동안 쉬었다고 할 때.

 $80 + x + 60 \le 160$

 $\therefore x \leq 20$

따라서 B지점에서 최대 20분까지 쉴 수 있다.

23-2 역에서 상점까지의 거리를 x km라 하면

 $\left(\begin{array}{c}$ 가는 데 걸리는 시간 $\left(\begin{array}{c}$ 물건을 사는데 걸리는 시간 $\left(\begin{array}{c}$ 돌아오는 데 걸리는 시간 $\left(\begin{array}{c}$ 걸리는 시간 $\end{array}\right)$

 $\frac{x}{3} + \frac{1}{3} + \frac{x}{3} \le 2, \ \frac{2}{3}x \le \frac{5}{3} \qquad \therefore x \le \frac{5}{2}$

따라서 역에서 $\frac{5}{2}$ km 이내에 있는 상점을 이용할 수 있다.

유형 24 원가와 정가에 대한 문제

● 68쪽 ●

24 6000원

24-1 15600원 **24-2** 8만 원

24 정가를 x워이라 하면

(파는 가격)= $x \times \frac{90}{100} = 0.9x(원)$

(이익)=(파는 가격)-(원가)=(0.9x-4500)원 … extcolored

이때 ①은 원가의 20 % 이상이므로

 $0.9x - 4500 \ge 4500 \times 0.2$, $0.9x \ge 5400$ $\therefore x \ge 6000$ 따라서 정가를 6000원 이상으로 정해야 한다.

24-1 정가를 x원이라 하면

 $0.9x - 12000 \ge 12000 \times 0.17$

 $\therefore x > 15600$

따라서 정가는 최소 15600원 이상으로 정하면 된다.

24-2 원가를 *x*원이라 하면

 $1.35x \times 0.8 - x \ge 6400$

 $1.08x - x \ge 6400$

 $0.08x \ge 6400$

∴ *x*≥80000

유형 25 도형에 대한 문제

● 68쪽 ●

25 24 cm

25-1 13 cm **25-2** ⑤

25 원뿔의 높이를 *h* cm라 하자.

 $\frac{1}{3} \times \pi \times 5^2 \times h \ge 200\pi \quad \therefore h \ge 24$

따라서 원뿔의 높이는 최소 24 cm 이상이면 된다.

25-1 평행사변형의 밑변의 길이를 x cm라 하자.

 $15 \times x \ge 195$

 $\therefore x \ge 13$

25-2 구하려는 다각형을 *n*각형이라 하면

 $(n-2) \times 180^{\circ} > 1800^{\circ}$

n-2>10 $\therefore n>12$

따라서 n은 자연수이므로 최소한 십삼각형이어야 한다.

유형 26 농도에 대한 문제

● 69쪽 ●

26 300 g

26-1 150 g **26-2** 600 g

26 추가되는 물의 양을 x g이라 할 때, 소금의 양을 구하는 식을 이용하면

 $\frac{8}{100} \times 500 \le \frac{5}{100} \times (500 + x)$ 에서

양변에 100을 곱하면 4000≤2500+5*x*

 $5x \ge 1500$: $x \ge 300$

따라서 최소 300 g의 물을 더 넣어야 한다.

26-1 증발시킬 물의 양을 x g이라 하면 소금의 양은 변하지 않으므로

 $400 \times \frac{5}{100} \ge (400 - x) \times \frac{8}{100}$

 $2000 \ge 3200 - 8x$

 $\therefore x \ge 150$

따라서 최소 150 g의 물을 증발시키면 된다.

26-2 10 %의 소금물을 x g 섞는다고 하면

 $\frac{4}{100} \times (900-x) + \frac{10}{100} \times x \ge \frac{8}{100} \times 900$

 $3600 - 4x + 10x \ge 7200$

 $\therefore x \ge 600$

따라서 10 %의 소금물을 최소 600 g 이상 섞어야 한다.

유형 27 성분의 함량에 대한 문제

● 69쪽 ●

27 100 g

27-1 60 g **27-2** 15개

27 섭취해야 하는 A 식품의 양을 *x* g이라 하면 B 식품은 (200-*x*) g을 섭취해야 하므로

 $\frac{8}{100}x + \frac{5}{100}(200 - x) \le 13$

 $8x + 1000 - 5x \le 1300$

 $3x \le 300$: $x \le 100$

따라서 섭취해야하는 A 식품의 양은 최대 100 g이다.

27-1 섭취해야 하는 B 식품의 양을 *x* g이라 하면

A 식품은 (200-x) g을 섭취해야 하므로

$$\frac{120}{100}(200\!-\!x)\!+\!\frac{320}{100}x\!\geq\!360$$

 $12(200-x)+32x \ge 3600$

 $2400-12x+32x \ge 3600$

 $20x \ge 1200$: $x \ge 60$

따라서 섭취해야하는 B 식품의 양은 최소 60 g 이상이다.

따라서 비타민 6g이 담긴 용기는 최대 15개까지 만들 수 있다.

27-2 비타민 6 g이 담긴 용기를 x개 만든다고 하면 비타민 4 g이 담긴 용기를 (40-x)개 만들 수 있으므로 $6x+4(40-x)\leq 190,\ 2x\leq 30$ $\therefore x\leq 15$

70~71쪽

... ①

1-1 1단계 x, 10

2단계 x, 20, 10, 9

1-2 8년 후

2-1 1단계 5000

2단계 0.6, 150000

3단계 5000, 150000, 30, 31

2-2 25명

3-1 8자루

3-2 4개

4-1 1500 m

4-2 음식점

1-2 *x*년 후의 아버지의 나이는 (37+x)세.

x년 후의 아들의 나이는 (7+x)세이므로

 $37 + x \le 3(7 + x)$

 $-2x \le -16$

 $\therefore x \ge 8$

따라서 8년 후부터는 아버지의 나이가 아들의 나이의 3배 이하가 된다. ... 2

채점 요소	배점
① x 년 후의 아버지와 아들의 나이 구하기	2점
② 부등식을 세우고 구하려는 답 구하기	3점
총점	5점

2-2 *x*명이 입장할 때, 총 입장료는 {50000+1500(*x*-20)}원 *x*명의 평균 입장료를 2300원이라 하면 총 입장료는 2300*x*원이다. ... ①

한 사람당 입장료가 평균 2300원 이하가 되려면

$$50000+1500(x-20) \le 2300x$$

 $50000 + 1500x - 30000 \le 2300x$

 $800x \ge 20000$

 $\therefore x \ge 25$

따라서 25명 이상 입장해야 한다.

채점 요소	배점
● x명의 실제 입장료와 한 사람당 평균 2300원일 때의 입장료 구하기	2점
부등식 세우기	2점
❸ 몇 명 이상 입장해야 하는지 구하기	2점
총점	6점

3-1 1단계

볼펜 x자루를 산다고 하면 $950x+4000 \le 1500x$

2단계

 $95x + 400 \le 150x$

 $400 \le 55x$

 $\therefore x \ge \frac{80}{11} = 7.2 \cdots$

3다겨

볼펜을 8자루 이상 살 경우 할인 매장에 가서 사는 것이 유리하다.

3-2 필통을 *x*개 산다고 하면

6000x + 3600 < 7200x

... ①

60x + 36 < 72x

-12x < -36 $\therefore x > 3$

... 🕖

따라서 x는 자연수이므로 필통을 최소 4개 이상 살 때는 할 이 매장에 가서 사는 것이 유리하다. ... ③

채점 요소	배점
lacktriangle 미지수 x 를 정하여 부등식 세우기	2점
② 부등식 풀기	3점
❸ 할인 매장에서 사야 할 최소한의 필통 개수 구하기	2점
총점	7점

4-1 1단계

준우가 걸어간 거리를 x km라 하면 자전거를 탄 거리는 (3-x) km이므로

$$\frac{3-x}{12} + \frac{x}{4} \le \frac{1}{2}$$

2단계

양변에 12를 곱하면 $3-x+3x \le 6$

$$2x \le 3$$
 $\therefore x \le \frac{3}{2}$

3단계

준우가 걸어간 거리는 최대 $\frac{3}{2}$ km, 즉, 1500 m이다.

4-2 터미널에서 어떤 가게까지의 거리를 x km라 하면 ... ① 가는 데 걸린 시간은 $\frac{x}{2}$ 시간, 볼일을 보는데 걸린 시간은 $\frac{1}{2}$ 시간, 돌아오는데 걸린 시간은 $\frac{x}{2}$ 시간이다.

1시간 30분의 여유가 있으므로 $\frac{x}{2} + \frac{1}{2} + \frac{x}{2} \le \frac{3}{2}$ 양변에 2를 곱하면 $2x+1 \le 3$, $2x \le 2$ $\therefore x \le 1$ \cdots **2**

따라서 1 km 이내의 음식점을 이용했다.

채점 요소	배점
$lackbox{0}$ 미지수 x 정하기	1점
	4점
❸ 방문할 수 있는 가게 찾기	2점
총점	7점

2 연립일차방정식

▲ 개념 다지기

73쪽. **75**쪽

... **(3**)

- **01**(1) × (2) (3) × (4) × (5) **02** ㄴ, ㄹ
- **03** (1) $\begin{cases} x+y=12 \\ 100x+50y=950 \end{cases}$ (2) $\begin{cases} x+y=20 \\ 9x+10y=187 \end{cases}$
- **04** (1) 풀이 참조, (1, 8), (2, 6), (3, 4), (4, 2) (2) 풀이 참조, (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) (3) (4, 2)
- **05** 3, 9, 12, 22, 2, 2, -1, -1, 2
- **06** (1) x=3, y=2 (2) x=1, y=4
- **07** 2, 16, 16, 13, 13, 16
- **08** (1) x = -4, y = -14 (2) $x = \frac{5}{3}$, y = -3
- **09** $x=2, y=\frac{1}{2}$ **10** x=5, y=-3
- **11** x=3, y=-1 **12** (1) 해가 무수히 많다. (2) 해가 없다.
- **13** a = -6. b = 4
- **01** (1) 등식이 아니다.
 - (2) 정리하면 -4x-4y=0
 - (3) x의 차수가 2

- (4) 정리하면 2y-7=0
- (5) 정리하면 -3x+y=0

- 06 (1) $\begin{cases} -2x-3y=-12 & \cdots & \bigcirc \\ 2x+y=8 & \cdots & \bigcirc \end{cases}$ 에서 $\\ \bigcirc + \bigcirc \Rightarrow$ 하면 $-2y=-4 & \therefore y=2$ $\\ y=2 \equiv \bigcirc$ 에 대입하면 $2x+2=8 & \therefore x=3$ (2) $\\ \begin{cases} 4x+y=8 & \cdots & \bigcirc \\ 3x-2y=-5 & \cdots & \bigcirc \end{cases}$ 에서 $\bigcirc \times 2+\bigcirc \Rightarrow$ 하여 풀면 x=1
- **08** (1) $\begin{cases} 5x-2y=8 & \cdots & \bigcirc \\ 2y=6x-4 & \cdots & \bigcirc \end{cases}$ 에서 \bigcirc 을 \bigcirc 에 대입하면 $5x-(6x-4)=8, -x=4 & \therefore x=-4$ x=-4를 \bigcirc 에 대입하면 $2y=-28 & \therefore y=-14$

x=1을 \bigcirc 에 대입하여 풀면 y=4

- **09** 괄호를 풀어서 정리하면 $\begin{cases} 2x + 2y = 5 & \cdots & \bigcirc \\ 3x 4y = 4 & \cdots & \bigcirc \end{cases}$ 에서 $\bigcirc \times 2 + \bigcirc \Rightarrow$ 하면 7x = 14 $\therefore x = 2$ x = 2를 \bigcirc 에 대입하면 4 + 2y = 5 $\therefore y = \frac{1}{2}$
- **10** $\begin{cases} 0.4x + 0.3y = 1.1 & \cdots & \bigcirc \\ \frac{x}{6} + \frac{y}{3} = -\frac{1}{6} & \cdots & \bigcirc \end{cases}$
 - ①×10을 하면 4x+3y=11 ··· ©
 - $\bigcirc \times 6$ 을 하면 x+2y=-1 ··· ②
 - \mathbb{C} - \mathbb{C} ×4를 하면 -5y=15 $\therefore y=-3$ y=-3을 \mathbb{C} 에 대입하여 풀면 x=5

- **11** $\begin{cases} 2x+3y=3 & \cdots & \bigcirc \\ -5x-18y=3 & \cdots & \bigcirc \end{cases}$ 에서
 - ①×6+①을 하면 7*x*=21 : *x*=3

x=3을 \bigcirc 에 대입하면 6+3y=3 $\therefore y=-1$

12 (1) ∫ 2x+y=-4 ···· □ 에서 □×3을 하면 $6x+3y=-12 \cdots \bigcirc$ $6x + 3y = -12 \cdots \bigcirc$

두 식 \bigcirc , \bigcirc 의 x, y의 계수와 상수항이 각각 같으므로 해

- $(2) \int -8x + 16y = 20$ · · · · 이 에서 $(2) \times (-4)$ 를 하면 $\begin{bmatrix} 2x-4y=5 & \cdots & \bigcirc \end{bmatrix}$ -8x+16y=-20 ··· © 두 식 \bigcirc , ©의 x, y의 계수는 각각 같고 상수항은 다르므 로 해가 없다
- 13 해가 무수히 많으므로 계수 사이의 관계가

$$\frac{a}{3} = \frac{b}{-2} = \frac{-8}{4}$$
 $\Rightarrow a = -6, b = 4$

유형 다지기

유형 28 미지수가 2개인 일차방정식

• 76쪽 •

28 ④

28-1 3 **28-2** ¬, ⊏ **28-3** ⑤

- **28** ①. ② 미지수가 1개인 일차방정식이다.
 - ③ xy의 차수가 2이므로 일차방정식이 아니다.
 - ⑤ x의 차수가 2이므로 일차방정식이 아니다.
- **28-1** 5y+3x-4=x-5에서 좌변의 모든 항을 우변으로 이항하면 x-5-5y-3x+4=0-2x-5y-1=0 $\therefore a = -2, b = -5$ 이므로 a - b = -2 - (-5) = 3
- **28-2** \neg $2(x+y)=5\times4 \Rightarrow 2x+2y-20=0$ $y = 6x^2 \implies -6x^2 + y = 0$ ➡ 차수가 2차이므로 일차방정식이 아니다. $= 10x + 7 = 3y \implies 10x - 3y + 7 = 0$
- **28-3** 이항하여 정리하면 (a-2)x+2y+3=0이므로 미지수가 2개인 일차방정식이 되려면 $a-2\neq 0$ 이어야 한다. $\therefore a \neq 2$

유형 29 미지수가 2개인 일차방정식의 해

• 76쪽 •

29 ③

- 29-1 ④ 29-2 나, ㄷ, ㄹ 29-3 6개
- **29** ③ x=3일 때 9+y=16에서 y=7
- **29-1** ④ x=1, y=3을 대입하면 3+15-7=11로 성립한다.
- **29-2** 나. x=10, $y=\frac{2}{5}$ 를 대입하면 10+2-12=0x=2, y=2를 대입하면 2+10-12=0□. *x*=−8, *y*=4를 대입하면 −8+20−12=0
- **29-3** (0, 10), (1, 8), (2, 6), (3, 4), (4, 2), (5, 0)의 6개

유형 30 일차방정식의 해가 주어질 때, 미지수의 값 구하기 • 77쪽 •

30 (4)

30-1 ② **30-2** 10 **30-3** 3

- **30** (-3, -1)이 일차방정식 kx+4y=17의 해이므로 -3k-4=17 : k=-7x=1, y=a를 -7x+4y=17에 대입하여 풀면 a=6 $\therefore k+a=-7+6=-1$
- **30-1** 3x+4y=15에 x=-3, y=k를 대입하면 -9+4k=15 $\therefore k=6$
- **30-2** x=2, y=a를 3x+2y=18에 대입하면 6+2a=18, 2a=12 : a=6x=b. y=b-1을 3x+2y=18에 대입하면 3b+2b-2=18, 5b=20 : b=4a+b=6+4=10
- **30-3** x=-1, y=4를 일차방정식 ax+2y=7에 대입하면 -a+8=7 : a=1x=3, y=1을 일차방정식 2x+by=9에 대입하면 6+b=9 : b=3

유형 31 연립방정식의 해

• 78쪽 •

- 31 (3x+2y=12)|x-2y=-4|
- **31-1** (1), (2) 풀이 참조 / x=3, y=5 **31-2** 6

- **31** 각 일차방정식에 x=2, y=3을 대입하면

 - $= 2-2 \times 3 = -4$
- = 3≠2+4
- $\therefore \begin{cases} 3x + 2y = 12 \end{cases}$
- **31-1** (1) x

(2)	\boldsymbol{x}	2	3	4	5	•••
	y	2	5	8	11	•••

31-2 2x+y=8의 해를 구하면 (1,6),(2,4),(3,2)그중 -3x+4y=10의 해를 구하면 (2,4)따라서 연립방정식의 해는 x=2, y=4이므로 a+b=2+4=6

유형 32 연립방정식의 해가 주어질 때 미지수의 값 구하기 • 78쪽 •

32 (5)

32-1 14 **32-2** -8

32 연립방정식의 해가 (3, a)이므로 두 식에 각각 대입하면

$$\begin{cases} 3+a=7 & \cdots \bigcirc \\ 3b+a=13\cdots \bigcirc \end{cases}$$

 \bigcirc 에서 3+a=7 $\therefore a=4$

©에서 3b+4=13 $\therefore b=3$

 $\therefore 2a - b = 2 \times 4 - 3 = 5$

32-1 (2, -1)을 두 식에 각각 대입하면

$$10-a=13 \cdots \bigcirc$$

 $2b+2=36 \cdots \bigcirc$

 \bigcirc 에서 10-a=13 $\therefore a=-3$

©에서 2b+2=36 : b=17

a+b=-3+17=14

32-2 (3q, q)를 두 식에 각각 대입하면

$$9q-q=-8$$
 ... \bigcirc

 $\lfloor 12q + pq + 3 = 0 \cdots \square$

 \bigcirc 에서 9q-q=-8 $\therefore q=-1$

 \bigcirc 에서 -12-p+3=0 $\therefore p=-9$

 $\therefore p-q=-9-(-1)=-8$

유형 33 연립방정식의 풀이 - 가감법

• 79쪽 •

33 a=3 b=2

33-1 3 **33-2** 2 **33-3** 지선 **33-4** 256 **33-5** 1

- **33** x를 소거해야 하고 a. b는 가장 작은 자연수이므로 $\bigcirc \times 3 - \bigcirc \times 2$ 를 해야 한다
 - $\therefore a=3, b=2$

33-1 $\begin{cases} 9x - 4y = 41 & \cdots$ $-3x+2y=-13 \cdots \bigcirc$

 $\bigcirc +2 \times \bigcirc$ 을 하면 3x=15

 $\therefore a=3$

33-2 $\begin{cases} 2x-5y=11 \cdots \bigcirc \\ 4x+3y=9 \cdots \bigcirc \end{cases}$ 에서 x를 소거하기 위해

 $\bigcirc \times 2 - \bigcirc$ 을 하면 -13y=13 $\therefore y=-1$ y=-1을 \bigcirc 에 대입하면 2x+5=11 $\therefore x=3$

a+b=3+(-1)=2

33-3 현수: x = -1, y = -2

지선: x=2, y=-1

으지: $x = -\frac{1}{2}$, y = 0

33-4 $\begin{cases} 2x + 3y = 3 & \cdots & \bigcirc \\ 7x + 8y = -2 & \cdots & \bigcirc \end{cases}$

 $\bigcirc \times 7 - \bigcirc \times 2$ 를 하면 5y = 25 $\therefore y = 5$

y=5를 \bigcirc 에 대입하여 풀면 x=-6

bx+ay=8에 x=-6. y=5를 대입하면

5a - 6b = 8

 $(10a-12b)^2=(8\times2)^2=256$

33-5 각 순서쌍을 일차방정식에 대입하면

-6a-10b=6 ...

3a+2b=6 ...

 $\bigcirc + \bigcirc \times 2$ 를 하면 -6b=18 $\therefore b=-3$

b=-3을 ©에 대입하여 풀면 a=4

a+b=4+(-3)=1

유형 34 연립방정식의 풀이 - 대입법

80쪽

34 ①

34-1 6 **34-2** ③ **34-3** ② **34-4** -7

- 34 $\begin{cases} x=1-y & \cdots \bigcirc \\ 2x+3y=4 \cdots \bigcirc \end{cases}$
 - ①을 ①에 대입하면 2(1-y)+3y=4 $\therefore y=2$ y=2를 ①에 대입하면 x=-1
 - $3a-b=3\times(-1)-2=-5$
- **34-1** ①을 ⓒ에 대입하면 *y*−10+5*y*=14, 6*y*=24 ∴ *k*=6
- **34-2** $\begin{cases} 4x + 3y = -1 & \cdots & \bigcirc \\ x y = 5 & \cdots & \bigcirc \end{cases}$
 - ①을 x에 관하여 풀면 x=y+5 … ©
 - ©을 \bigcirc 에 대입하면 4(y+5)+3y=-1 $\therefore y=-3$ y=-3을 \bigcirc 에 대입하면 x=2
 - $\therefore 3a+2b=3\times 2+2\times (-3)=0$
- **34-3** \neg . x=2, y=4 \vdash . x=0, y=1 \vdash . x=1, y=4 \vdash . x=2, y=4
- 34-4 $\begin{cases} 2y = x 8 & \cdots \bigcirc \\ -5x 2y = -16 & \cdots \bigcirc \end{cases}$
 - ①을 ©에 대입하면 -5x-(x-8)=-16 $\therefore x=4$ x=4를 ①에 대입하여 풀면 y=-2
 - -x+ay=10에 x=4, y=-2를 대입하면 -4-2a=10 $\therefore a=-7$

유형 35 괄호가 있는 연립방정식

• 80쪽 ●

35 18

35-1 −4 **35-2** 2

35 두 일차방정식을 간단히 하면

$$\begin{cases} -x - y = 0 \\ 2x - y = 6 \end{cases}$$

위 연립방정식을 풀면 x=0, y=-6

- $x-3y=0-3\times(-6)=18$
- 35-1 두 일차방정식을 간단히 하면

$$\begin{cases} -x - 3y = 7 \\ x - 5y = 9 \end{cases}$$

위 연립방정식을 풀면 x=-1, y=-2

a+1=-1, b=-2에서 a=-2, b=-2

- $\therefore a+b=-2+(-2)=-4$
- 35-2 두 일차방정식을 간단히 하면

$$\begin{cases} 4x + y = -10 \\ -5x - 3y = 9 \end{cases}$$

위 연립방정식을 풀면 x = -3, y = 2

따라서 a(x+y)+1=-1에 x=-3, y=2를 대입하면

$$-a+1=-1$$
 : $a=2$

유형 36 계수가 분수 또는 소수인 연립방정식 • 81쪽

36 −2

36-1 ⑤ **36-2** 10 **36-3** -2

위 연립방정식을 풀면 x=-8, y=-6

따라서 a=-8, b=-6이므로 a-b=-8-(-6)=-2

36-1
$$\begin{cases} 0.1x - 0.15y = 0.65 \cdots \bigcirc \\ \frac{1}{4}x + \frac{1}{3}y = -\frac{1}{2} \cdots \bigcirc$$

 9×100 , ⓒ $\times 12$ 를 하면 $\begin{cases} 10x - 15y = 65 \\ 3x + 4y = -6 \end{cases}$

위 연립방정식을 풀면 x=2, y=-3

$$\mathbf{36-2} \, \left\{ \begin{array}{ll} \frac{x+1}{3} + \frac{y}{2} \! = \! 1 & \cdots \, \bigcirc \\ \\ \frac{x-2}{4} + \frac{y+4}{3} \! = \! \frac{4}{3} \, \cdots \, \bigcirc \end{array} \right.$$

- $\bigcirc \times$ 6을 하면 2(x+1)+3y=6 $\therefore 2x+3y=4$
- $\bigcirc \times 12$ 를 하면 3(x-2)+4(y+4)=16
- $\therefore 3x+4y=6$

$$\begin{cases} 2x+3y=4 \\ 3x+4y=6 \end{cases}$$
을 풀면 $x=2, y=0$

따라서 5x+3y=k에 (2,0)을 대입하면 k=10

- **36-3** $\begin{cases} (y-x)+1.5y=6 & \cdots \bigcirc \\ 0.\dot{6}x-1.\dot{3}(x+y)=-1.\dot{9} & \cdots \bigcirc \end{cases}$
 - \bigcirc 의 양변에 2를 곱하고 정리하면 -2x+5y=12 ··· ©
 - \bigcirc 에서 $\frac{6}{9}x \frac{12}{9}(x+y) = -2$ 의 양변에 9를 곱하고 정리
 - 하면 -x-2y=-3 ··· ②
 - ©, ②을 연립하여 풀면 x=-1, y=2
 - $\therefore a=-1, b=2$ 이므로 ab=-2

유형 $\mathbf{37}$ A=B=C 꼴의 방정식

• 82쪽 •

37 3

37-1 5 **37-2** 6 **37-3** 1

- **37** $\left\{ \begin{array}{ll} \frac{3}{4}x \frac{1}{2}y = 2 \\ 1.2x + 0.4y = 2 \end{array} \right. \text{ only} \left\{ \begin{array}{ll} 3x 2y = 8 & \cdots & \bigcirc \\ 12x + 4y = 20 & \cdots & \bigcirc \end{array} \right.$
 - \bigcirc , \bigcirc 을 연립하여 풀면 x=2, y=-1
 - $\therefore a=2, b=-1$ 이므로 a-b=3
- **37-1** $\left\{ \begin{array}{l} 0.2(x+2y+6) = x \\ \frac{1}{2}(3x-2y) = x \end{array} \right.$ $\left. \begin{array}{l} -4x+2y = -6 \\ x = 2y \end{array} \right.$

연립하여 풀면 x=2, y=1

따라서 3x+ky-11=0에 (2,1)을 대입하여 풀면 k=5

37-2 $\left\{ egin{array}{ll} 2x-4y+13=3x-2y \\ 3x-2y=x-y+11 \end{array}
ight.$ 로 바꾸어 간단히 정리하면

 $\int x + 2y = 13 \cdots \bigcirc$

 $\left(\begin{array}{c} 2x-y=11 & \cdots \end{array} \right)$

 \bigcirc , \bigcirc 을 연립하여 풀면 x=7, y=3

a+2=7, 3b=3에서 a=5, b=1

 $\therefore a+b=6$

37-3 $\begin{cases} \frac{x+y-1}{3} = \frac{x-7}{5} \\ \frac{x+y+a}{4} = \frac{x-7}{5} \end{cases} \text{ only } \begin{cases} 5(x+y-1) = 3(x-7) \\ 5(x+y+a) = 4(x-7) \end{cases}$

$$\therefore \begin{cases} 2x + 5y = -16 & \cdots \bigcirc \\ x + 5y = -5a - 28 & \cdots \bigcirc \end{cases}$$

 \bigcirc 에 y=-10을 대입하면 2x-50=-16 $\therefore x=17$ x=17, y=-10을 \bigcirc 에 대입하면 17-50=-5a-28

 $\therefore a=1$

유형 38 연립방정식의 해가 주어진 경우 미지수 구하기 • 82쪽 •

38 - 1

38-1 2 **38-2** 3 **38-3** 19

38 x=2, y=3을 주어진 연립방정식에 대입하면

 ${ 2a+3b=12 \atop -3a+2b=-5} \rightarrow { 6a+9b=36 \atop -6a+4b=-10 \cdots \bigcirc }$

b=2를 \bigcirc 에 대입하여 풀면 a=3

- b-a=2-3=-1
- **38-1** 4x+y=2에 x=a, y=-2를 대입하면

4a-2=2 : a=1

x-by=3에 x=1, y=-2를 대입하면

1+2b=3 $\therefore b=1$

 $\therefore a+b=2$

38-2 x=2, y=1을 주어진 연립방정식에 대입하면

 $\left\{\begin{matrix} 3a=b+1\\ 2:5=a:b \end{matrix}\right. \Rightarrow \left\{\begin{matrix} 3a=b+1 & \cdots & \bigcirc \\ 2b=5a & \cdots & \bigcirc \end{matrix}\right.$

 \bigcirc . \bigcirc 을 연립하여 풀면 a=2. b=5

b-a=5-2=3

38-3 x = (4와 10의 최대공약수) = 2

y=(2와 3의 최소공배수)=6

 $\begin{cases} 2ax-7y=-34 \\ bx-ay=22 \end{cases}$ 의 해는 (2, 6)이다.

즉, 2ax-7y=-34에서 4a-42=-34 : a=2

bx-ay=22에서 2b-12=22 : b=17

 $\therefore a+b=19$

유형 39 연립방정식의 해의 조건이 주어진 경우 • 83쪽 •

39 4

39-1 2 **39-2** 28 **39-3** 2

39 $\begin{cases} 3(x-y)+2y=2 \\ y=x+4 \end{cases}$ 를 풀면 x=3, y=7

x=3, y=7을 ax+(x-2y)=1에 대입하면

3a-11=1, 3a=12 : a=4

39-1 $\begin{cases} \frac{1}{3}x - \frac{1}{2}y = \frac{1}{6} \\ x = 2y \end{cases} \Rightarrow \begin{cases} 2x - 3y = 1 \\ x = 2y \end{cases}$ 를 풀면 x = 2, y = 1

x=2, y=1을 3x-ky=4에 대입하면 6-k=4

39-2 x=a, y=b를 5y=2x-8에 대입하면 5b=2a-8

a:b=3:2에서 2a=3b

 $\left\{ egin{array}{ll} 5b = 2a - 8 \ 2a = 3b \end{array}
ight.$ 를 풀면 a = -6, b = -4

 $a^2 - ab + b^2 = 36 - 24 + 16 = 28$

39-3 $\frac{x-y}{4} - \frac{y}{6} = \frac{7}{12}$ 의 양변에 12를 곱하면

3(x-y)-2y=7 : 3x-5y=7

$$x: y=4:1$$
에서 $x=4y$
$$\begin{cases} 3x-5y=7 \\ x=4y \end{cases}$$
를 풀면 $x=4, y=1$
$$x=4, y=1 \triangleq ax-3y=5$$
에 대입하면 $4a-3=5$ $\therefore a=2$

유형 40 두 연립방정식의 해가 같은 경우

• 84쪽 •

40 3

- 40 두 연립방정식의 공통된 해는 $\begin{cases} y=2x+2 & \cdots & \bigcirc \\ x-2y=2 & \cdots & \bigcirc \end{cases}$ 의 해와 같다.
 - \bigcirc , \bigcirc 을 연립하여 풀면 x=-2, y=-2 x=-2, y=-2를 ax+by=8, bx-ay=4에 각각 대입하면 $\begin{cases} -2a-2b=8 & \cdots & \bigcirc \\ -2b+2a=4 & \cdots & \bigcirc \end{cases}$
 - ©. ②을 연립하여 풀면 a=-1, b=-3 $\therefore ab=3$
- **40-1** $\begin{cases} 3x+5y=-2 \\ 5x+2y=-16 \end{cases}$ 을 풀면 x=-4, y=2 x=-4, y=2를 px+2y=0, -x+qy=10에 각각 대입하면 -4p+4=0 $\therefore p=1$ 4+2q=10 $\therefore q=3$ $\therefore p-q=1-3=-2$
- 40-2 두 연립방정식의 해가 같으므로

 $\left\{egin{array}{l} 2y{=}3x{-}1 \ 5x{-}2y{=}7 \end{array}
ight.$ 의 해가 두 연립방정식의 해이다.

즉. x=3, y=4

x=3, y=4를 mx+ny=-7, nx-my=6에 각각 대입하면 3m+4n=-7, 3n-4m=6이므로

연립하여 풀면 $m = -\frac{9}{5}$, $n = -\frac{2}{5}$

 $\therefore 5(m+n) = -11$

유형 41 잘못 보고 해를 구한 경우

• 84쪽 •

41 2

41-1
$$a=3$$
, $b=4$ **41-2** 7

- ①에 x=3을 대입하면 6-y=3 ∴ y=3
 즉, 잘못 보고 푼 답은 x=3, y=3이다.
 ①의 y의 계수를 a로 잘못 보았다고 하면
 x=3, y=3은 x+ay=9의 해이므로 3+3a=9
 ∴ a=2
- **41-1** $x=2,\,y=-1$ 을 연립방정식 $\begin{cases} bx+ay=5\\ ax+by=2 \end{cases}$ 에 대입하면 $\begin{cases} 2b-a=5 &\cdots &\bigcirc \\ 2a-b=2 &\cdots &\bigcirc \end{cases}$
 - \bigcirc , \bigcirc 을 연립하여 풀면 $a{=}3$, $b{=}4$
- **41-2** x=-2, y=2를 ax+by=2에 대입하면 -2a+2b=2 ··· ① x=3, y=-2를 ax+by=2에 대입하면 3a-2b=2 ··· ② ①, ②을 연립하여 풀면 a=4, b=5 또, x=3, y=-2를 cx-7y=8에 대입하면 3c+14=8 $\therefore c=-2$ $\therefore a+b+c=4+5-2=7$

유형 42 특수한 해를 가진 연립방정식

● 85쪽 ●

42 (4)

42-1 ② **42-2** ③ **42-3**
$$a=-4$$
, $b=-9$ **42-4** ⑤ **42-5** -3

- **42** ④ $\left\{ \begin{array}{ll} 2x-y=1 \\ 4x-2y=3 \end{array} \right\}$ 에서 $\left\{ \begin{array}{ll} 4x-2y=2 \\ 4x-2y=3 \end{array} \right\}$ 이므로 해가 없다.
- **42-1** 방정식의 계수를 정수로 고치면 $\begin{cases} 5x 3y = -30 \\ 5x 3y = 15a \end{cases}$

해가 없으려면 $-30 \neq 15a$ $\therefore a \neq -2$

42-2
$$\begin{cases} 8x = -6y + 4 \\ 4x + 3y = 2 \end{cases} \rightarrow \begin{cases} 8x + 6y = 4 \\ 4x + 3y = 2 \end{cases} \rightarrow \begin{cases} 8x + 6y = 4 \\ 8x + 6y = 4 \end{cases}$$

42-3 $\begin{cases} ax+3y=2 & \cdots & \bigcirc \\ -12x-by=6 \end{cases}$ 에서 $\bigcirc \times 3$ 을 하면 $\begin{cases} 3ax+9y=6 \\ -12x-by=6 \end{cases}$

해가 무수히 많으려면 두 방정식이 일치해야하므로

$$3a = -12, 9 = -b$$

$$\therefore a = -4, b = -9$$

42-4 $\begin{cases} 3x = 5y + a \\ 10y = bx + 2 \end{cases}$ \Rightarrow $\begin{cases} 3x - 5y = a \\ -bx + 10y = 2 \end{cases}$ 의 해가 존재하지 않으려면

$$\frac{3}{-b} = \frac{-5}{10} \neq \frac{a}{2}$$
 $\therefore a \neq -1, b = 6$

42-5
$$\begin{cases} -\frac{x}{3} + \frac{y}{2} = 2 \\ 6x + (2k - 3)y = -36 \end{cases} \Rightarrow \begin{cases} -2x + 3y = 12 \\ 6x + (2k - 3)y = -36 \end{cases}$$
$$\Rightarrow \begin{cases} 6x - 9y = -36 \\ 6x + (2k - 3)y = -36 \end{cases}$$
$$2k - 3 = -99 |k| |k = -3$$

- 1단계 5, -1, 5a-b, a+5b
 - 2단계 52, 2, 2, 1 3단계 2, 1, 3

- **1-2** 25
- **2-1** 1단계 x+3y, -5, 5
 - 2단계 -5, 5, 5, 2
 - 3단계 2, 11
- **2-2** 7
- **3-1** 27
- **3-2** x=7, y=3
- **4-1** 5
- **4-2** (3, 2)
- **1-2** 연립방정식의 해가 (b, b-1)이므로

x=b, y=b-1을 두 식에 대입하면

$$\begin{bmatrix} 3b+4(b-1)=24 & \cdots & \bigcirc \\ ab+b-1=15 & \cdots & \bigcirc \end{bmatrix}$$

... 0

- \bigcirc 에서 7b=28 $\therefore b=4$
- ©에 b=4를 대입하면 4a+3=15 $\therefore a=3$

 $\therefore a^2 + b^2 = 9 + 16 = 25$

채점 요소	배점
0 $x=b, y=b-1$ 을 두 일치방정식에 각각 대입하기	2점
② a, b의 값 구하기	2점
$3a^2+b^2$ 의 값 구하기	1점
총점	5점

2-2
$$\begin{cases} \frac{x+y}{2} + y = 2 \\ 2x - y = 1 \end{cases} \rightarrow \begin{cases} x + 3y = 4 \cdots \bigcirc \\ 2x - y = 1 \cdots \bigcirc \end{cases}$$

 $\bigcirc + \bigcirc \times 3$ 을 하면 7x=7 $\therefore x=1$

x=1을 \bigcirc 에 대입하여 풀면 y=1

x=1, y=1이 $x+\frac{2}{3}y=k$ 를 만족시키므로 대입하면

$$k=1+\frac{2}{3}=\frac{5}{3}$$
 ... 2

$$\therefore 3k+2=3\times\frac{5}{3}+2=7$$
 ... 3

채점 요소	배점
● 연립방정식을 세워 해 구하기	3점
② k의 값 구하기	2점
③ 3k+2의 값 구하기	1점
총점	6점

3-1 1단계

$$\begin{cases} ax-by=4 \\ bx+ay=7 \end{cases}$$
에서 a , b 를 바꾸면 $\begin{cases} bx-ay=4 \\ ax+by=7 \end{cases}$

바꾼 식에 x=2, y=1을 대입하면

$${2b-a=4 \atop 2a+b=7} \rightarrow {-a+2b=4 \cdots \bigcirc \atop 2a+b=7 \cdots \bigcirc}$$

 \bigcirc , \bigcirc 을 연립하여 풀면 a=2. b=3

2단계

a=2, b=3을 처음 연립방정식에 대입하면 $\begin{cases} 2x-3y=4\\ 3x+2y=7 \end{cases}$

이 식을 연립하여 풀면 $x=\frac{29}{13}, y=\frac{2}{13}$

3단계

$$m = \frac{29}{13}$$
, $n = \frac{2}{13}$ 이므로

$$13(m-n)=13\left(\frac{29}{13}-\frac{2}{13}\right)=27$$

3-2 혜수는 -x+by=-4를 바르게 보았으므로

x=2, y=-2를 대입하면

$$-2-2b = -4$$
 : $b=1$

... ①

진영이는 2x-y=a를 바르게 보았으므로

x=5, y=-1을 대입하면

$$10 - (-1) = a$$
 : $a = 11$

... 🕢

처음 연립방정식은
$$\begin{cases} 2x-y=11 & \cdots & \bigcirc \\ -x+y=-4 & \cdots & \bigcirc \end{cases}$$
이므로

 \bigcirc . \bigcirc 을 연립하여 풀면 x=7, y=3

... 🚯

채점 요소	배점
❶ 혜수가 바르게 본 식과 <i>b</i> 의 값 구하기	2점
② 진영이가 바르게 본 식과 a 의 값 구하기	2점
③ 처음 연립방정식의 해 구하기	3점
총점	7점

4-1 1단계

$${x+y=2x-y+1 \atop x+y=4x-ky+5} \rightarrow {x-2y=-1 \atop 3x-(k+1)y=-5}$$

x의 계수를 같게 만들면

$$\begin{cases} 3x - 6y = -3 \\ 3x - (k+1)y = -5 \end{cases}$$

x, y의 계수는 같고 상수항은 다르면 연립방정식의 해가 없 으므로 6=k+1이어야 한다.

3단계

6=k+1에서 k=5

 ${2x+4y+6=0\atop 3x+(a+1)y+b=0} \to {6x+12y+18=0\atop 6x+2(a+1)y+2b=0} \text{ and }$ 연립방정식의 해가 무수히 많으려면 x y의 계수와 상수항 이 각각 같아야 하므로 12=2(a+1), 18=2b

> a = 5, b = 9... 🕢

> 따라서 ax+by=33 즉, 5x+9y=33의 해 중 x, y가 모두 자연수인 것을 구하면 (3, 2)이다.

채점 요소	배점
● 연립방정식의 해가 무수히 많을 조건 구하기	2점
② a, b의 값 구하기	3점
$oldsymbol{0}$ x,y 가 자연수인 해 구하기	2점
총점	7점

개념 다지기

- **01** 1000x + 800y, 5x + 4y, 3, 6, 3, 6
- **02** 아버지 : 40세, 아들 : 15세
- **03** (1) x+y=500 (2) $\frac{10}{100}x-\frac{8}{100}y=14$ (3) 330년
- **04** 1, 2, 3, 1, $\frac{1}{12}$, $\frac{1}{8}$, 12 **05** 5 km
- **06** (1) $\frac{6}{100}x$, $\frac{10}{100}y$, 32

(2) 6 %의 소금물: 200 g. 10 %의 소금물: 200 g

02 현재 아버지의 나이를 x세. 아들의 나이를 y세라 하면

$${x-y=25 \atop x+5=2(y+5)+5} \rightarrow {x-y=25 \atop x-2y=10}$$

x = 40, y = 15

따라서 현재 아버지의 나이는 40세. 아들의 나이는 15세이다.

03 (3)
$$\begin{cases} x+y=500 \\ \frac{10}{100}x - \frac{8}{100}y = 14 \end{cases}$$
를 풀면 $x=300, y=200$

작년 남학생 수는 300명이므로 올해 남학생 수는 $300 + \frac{10}{100} \times 300 = 330 ()$

05 자전거를 타고 간 거리를 x km, 걸어간 거리를 y km라고 하면 x+y=10 (거리에 관한 식) 으로 연립방정식을 세우면 $\frac{x}{10} + \frac{y}{2} = 2$

> 연립방정식을 풀면 x=5. y=5따라서 준호가 걸어간 거리는 5 km이다.

06 (1) (8 %의 소금물의 소금의 양)= 8/100 × 400=32(g)

(2)
$$\begin{cases} x+y=400 \\ \frac{6}{100}x+\frac{10}{100}y=32 \end{cases} \stackrel{\text{E-E-B}}{=} \stackrel{\text{E-E-B}}{=} 200, y=200$$

따라서 6 %의 소금물 : 200 g, 10 %의 소금물 : 200 g

유형 43 수에 대한 문제

• 90쪼 •

43 6, 27

43-2 36 **43-1** 23 **43-3** 37

- **43** 두 자연수를 x, y(x < y)라 놓으면 두 수의 합은 x+y=33 ··· ① 큰 수를 작은 수로 나누면 몫이 4이고, 나머지가 3이므로 $y=4x+3 \cdots \bigcirc$ \bigcirc ①을 연립하여 풀면 x=6. y=27
- **43-1** 두 자연수를 x, y(x>y)라 놓으면
- **43-2** 십의 자리의 숫자를 x. 일의 자리의 숫자를 y라 하면 각 자리의 숫자의 합은 9이므로 x+y=9 ··· \bigcirc 일의 자리의 숫자에 십의 자리의 숫자를 뺀 값이 3이므로 $y-x=3 \cdots \bigcirc$ \bigcirc , \bigcirc 을 연립하여 풀면 x=3, y=6

따라서 두 자리의 자연수는 36이다.

- **43-3** 십의 자리의 숫자를 x. 일의 자리의 숫자를 y라 하면 ${x+y=10 \atop 10y+x=2(10x+y)-1} \rightarrow {x+y=10 \atop 19x-8y=1}$
 - $\therefore x=3, y=7$ 따라서 처음 자연수는 37이다.

유형 44 나이에 대한 문제

• 9N쯔 •

44 48세

44-1 37살 **44-2** 서현 : 7살, 이모 : 30세

44 현재 어머니의 나이를 x세, 소영이의 나이를 y살이라 하면

$${x=3y \atop x-5=4(y-5)-1} \rightarrow {x=3y \atop x-4y=-16}$$

x = 48, y = 16

따라서 현재 어머니의 나이는 48세이다.

44-1 현재 아버지의 나이를 x세. 아들의 나이를 y살이라 하면

$$\begin{cases} x-y=27\\ x=2y+22 \end{cases}$$

x = 32, y = 5

따라서 현재 아버지와 아들의 나이의 합은 37살이다.

44-2 현재 서현이의 나이를 x살, 이모의 나이를 y세라 하면

$$\begin{cases} x+y=37 \\ y=2x+16 \end{cases}$$

x = 7, y = 30

따라서 현재 서현이의 나이는 7살 이모의 나이는 30세이다

유형 45 가격, 개수, 사람 수에 대한 문제

45 2800원

45-1 꿩: 23마리, 토끼: 12마리 **45-2** 15개 **45-3** 3명 45-4 35명

45 생수 1병의 가격을 x원, 이온음료 1병의 가격을 y원이라 하면 6x+5y=12400

$$|y=x+400|$$

위 식을 연립하여 풀면 x=800, y=1200따라서 생수 2병과 이온음료 1병의 가격은 800×2+1200=2800(원)

45-1 꿩의 수를 x마리, 토끼의 수를 y마리라 하면

$$\begin{cases} x + y = 35 \\ 2x + 4y = 94 \end{cases}$$

x = 23, y = 12

따라서 꿩은 23마리, 토끼는 12마리이다.

45-2 지민이가 맞힌 문제 수를 x개, 틀린 문제 수를 y개라 하면

$$\begin{cases} x + y = 20 \\ 5x - 2y = 65 \end{cases}$$

 $\therefore x=15, y=5$

따라서 지민이가 맞힌 문제 수는 15개이다.

45-3 어른이 x명, 어린이가 y명 입장하였다고 하면

$$\begin{cases} x + y = 7 \\ 1000x + 400y = 4000 \end{cases} \rightarrow \begin{cases} x + y = 7 \\ 5x + 2y = 20 \end{cases}$$

 $\therefore x=2, y=5$

따라서 어른이 2명, 어린이가 5명 입장하였으므로 구하는 답은 5-2=3(명)

45-4 학생 수를 x명이라 하고 공책의 수를 y권이라 하면

$$4x+10=y$$

x = 35, y = 150

유형 46 도형에 대한 문제

91쪽

46 5 cm

46-1 12 cm **46-2** 7개

윗변의 길이를 x cm. 아랫변의 길이를 y cm라 하면

$$\begin{cases} y = x+3 \\ \frac{1}{2}(x+y) \times 10 = 65 \end{cases} \quad \therefore x = 5, y = 8$$

따라서 윗변의 길이는 5 cm이다.

46-1 밑변의 길이를 x cm, 높이를 y cm라 하면

$$\begin{cases} 2x = y + 6 \\ x + y = 21 \end{cases}$$

x = 9, y = 12

따라서 삼각형의 높이는 12 cm이다.

46-2 정사각형 모양의 개수를 x개 정삼각형 모양의 개수를 y개 라 하면

$$x+y=15$$

 $\therefore x=7, y=8$

 $|_{4x+3y=52}$

따라서 정사각형 모양의 개수는 7개이다.

유형 47 횟수에 대한 문제

92쪽

47 ②

47-1 20번 **47-2** x=2, y=3 **47-3** 12회

47 1점을 득점한 공격의 수를 x번, 2점을 득점한 공격의 수를 y번이라 할 때.

$$\begin{cases} x+y=10 \\ x+2y=13 \end{cases}$$

 $\therefore x=7, y=3$

따라서 2점을 득점한 공격 수는 3번이다.

47-1 2점 슛의 개수를 x번, 3점 슛의 개수 y번이라 할 때

$$\begin{cases} x+y=29 \\ 2x+3y=67 \end{cases} \quad \therefore x=20, y=9$$

따라서 2점 슛은 20번 성공했다.

47-2
$$\begin{cases} 1 \times 2 + 2x + 4 \times 3 + 6y = 36 \\ 2 + x + 3 + y = 10 \end{cases} \Rightarrow \begin{cases} x + 3y = 11 \\ x + y = 5 \end{cases}$$

 $\therefore x=2, y=3$

47-3 태진이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 예영이가 이긴 횟수는 y회, 진 횟수는 x회이다.

$$\begin{cases} 2x - y = 14 \\ -x + 2y = 8 \end{cases} \quad \therefore x = 12, y = 10$$

따라서 태진이가 이긴 횟수는 12회이다.

유형 48 원가, 정가에 대한 문제

• 92쪽 •

48 40개

48-1 26400원

48 구입한 A 제품의 개수를 x개, B 제품의 개수를 y개라 하면 $\begin{cases} x+y=100 \\ \frac{20}{100} \times 800x + \frac{25}{100} \times 1000y = 21400 \end{cases}$

x = 40, y = 60

48-1 두 청바지의 원가를 각각 x원, y원(단, x>y)이라 하면

$$\begin{cases} \left(1 + \frac{10}{100}\right)x + \left(1 + \frac{10}{100}\right)y = 49500\\ x - y = 3000 \end{cases}$$

→
$$\begin{cases} x+y=45000 \\ x-y=3000 \end{cases}$$
 : $x=24000, y=21000$

따라서 더 비싼 청바지의 정가는 24000×1.1=26400(원)

유형 49 증가, 감소에 대한 문제

• 93쪽 •

49 252명

49-1 230상자

49-2 버스 요금: 9000원, 숙박 요금: 54000원

49 작년의 남학생 수를 x명, 여학생 수를 y명이라 하면

$$\left\{\frac{x+y=910}{\frac{8}{100}x - \frac{5}{100}y = 26}\right. \Rightarrow \left\{\frac{x+y=910}{8x - 5y = 2600}\right.$$

x = 550, y = 360

따라서 올해의 남학생 수는 $550 + \frac{8}{100} \times 550 = 594(명)$

∴ 594-342=252(명)

49-1 작년 황도의 수확량을 x상자, 백도의 수확량을 y상자라 하면

$${x+y=480 \atop -\frac{10}{100}x+\frac{15}{100}y=482-480} \Rightarrow {x+y=480 \atop -2x+3y=40}$$

 $\therefore x = 280, y = 200$

따라서 올해 백도의 수확량은

$$200 + \frac{15}{100} \times 200 = 230$$
(상자)이다.

49-2 1인 기준으로 작년의 버스 요금을 x원, 숙박 요금을 y원이라 하면 작년의 금액의 합계는

63000×
$$\frac{100}{105}$$
=60000(원)이므로

$$\begin{cases} x+y = 60000 \\ -\frac{10}{100}x + \frac{8}{100}y = 3000 \end{cases} \rightarrow \begin{cases} x+y = 60000 \\ -5x + 4y = 150000 \end{cases}$$

 $\therefore x = 10000, y = 50000$

따라서 올해의 버스 요금과 숙박 요금은 각각

 $10000 \times (1-0.1) = 9000(원)$,

50000×(1+0.08)=54000(원)이다.

유형 50 일에 대한 문제

• 93쪽 •

50 10일

50-1 12시간 **50-2** 24분

50 전체 일의 양을 1로 놓고 진경이와 찬성이가 하루에 할 수 있는 일의 양을 각각 *x*. *y*라 하면

$$\begin{cases} 6x + 6y = 1 \\ 2x + 12y = 1 \end{cases} \therefore x = \frac{1}{10}, y = \frac{1}{15}$$

따라서 진경이가 하루에 할 수 있는 일의 양은 $\frac{1}{10}$ 이므로 혼자서 전체 1만큼의 일을 끝내려면 10일이 걸린다.

50-1 전체 일의 양을 1로 놓고 A와 B가 한 시간에 할 수 있는 일의 양을 각각 *x*. *y*라 하면

$$\begin{cases} 3x + 8y = 1 \\ 6x + 4y = 1 \end{cases} \quad \therefore x = \frac{1}{9}, y = \frac{1}{12}$$

따라서 B가 혼자서 이 일을 한다면 12시간이 걸린다.

50-2 물통에 물을 가득 채웠을 때 물의 양을 1로 놓고 A, B 호스로 1분 동안 채울 수 있는 물의 양을 각각 x, y라 하면

$$\begin{cases} 18x + 10y = 1 \\ 15x + 15y = 1 \end{cases} \quad \therefore x = \frac{1}{24}, y = \frac{1}{40}$$

따라서 A 호스로만 물통을 가득 채우는 데 걸리는 시간은 24분이다

유형 51

거리, 속력, 시간에 대한 문제 - 중간에 속력이 바뀌는 경우

51 90 m

51-1 10 km

51-2 걸어간 거리 : 400 m. 뛰어간 거리 : 1600 m

51 현성이네 집에서 병원까지의 거리를 x m, 병원에서 약국까지의 거리를 y m라 하면

$$\begin{cases} x+y=210 \\ \frac{x}{90} + \frac{y}{60} = 3 \end{cases} \quad \therefore x=90, y=120$$

따라서 집에서 병원까지의 거리는 90 m이다.

51-1 올라간 거리를 x km, 내려온 거리를 y km라 하면

$$\begin{cases} y = x + 4 \\ \frac{x}{3} + \frac{y}{4} = \frac{9}{2} \end{cases} \rightarrow \begin{cases} y = x + 4 \\ 4x + 3y = 54 \end{cases} \quad \therefore x = 6, y = 10$$

따라서 내려온 거리는 10 km이다.

51-2 집에서 출발하여 걸어간 거리를 x m, 뛰어간 거리를 y m라 하면

$$\begin{cases} x+y=2000 \\ \frac{x}{60} + \frac{y}{120} = 20 \end{cases} \quad \therefore x=400, y=1600$$

따라서 걸어간 거리는 400 m, 뛰어간 거리는 1600 m이다.

유형 **52** 거리, 속력, 시간에 대한 문제 - 만나는 경우 • 94쪽 •

52 25분 후

52-1 시속 6 km **52-2** 120 km

52 동생이 걸은 시간을 x분, 형이 걸은 시간을 y분이라 하면 (동생이 걸은 시간)=(형이 걸은 시간)+15분 이므로 (동생이 걸은 거리) = (형이 걸은 거리)

$$\begin{cases} x = y + 15 \\ 50x = 80y \end{cases} \therefore x = 40, y = 25$$

따라서 형이 산책을 나간 지 25분 후에 두 사람은 만난다.

52-1 현아의 속력을 시속 $x \, \mathrm{km}$, 기광이의 속력을 시속 $y \, \mathrm{km}$ 라

고 하면

$$\begin{cases} x: y=1:2\\ \frac{100}{60}x + \frac{100}{60}y = 15 \end{cases} \rightarrow \begin{cases} y=2x\\ x+y=9 \end{cases} \quad \therefore x=3, y=6$$

따라서 기광이의 속력은 시속 6 km이다.

52-2 동현이가 시속 80 km로 40 km를 가는데 걸린 시간은

$$\frac{40}{80} = \frac{1}{2}$$
(시간)

동현이가 출발한 지 x시간, 지훈이가 출발한 지 y시간 후에 두 사람이 만난다고 하면

$$\begin{cases} x = y + \frac{1}{2} \\ 80x = 120y \end{cases} \therefore x = \frac{3}{2}, y = 1$$

따라서 두 사람이 만나는 지점은 서울에서 $120 \times 1 = 120 \text{ (km)}$ 만큼 떨어진 곳이다.

유형 **53** 거리, 속력, 시간에 대한 문제 - 트랙을 도는 경우 • 95쪽 •

53 분속 190 m

53-1 시속 2 km **53-2** 100 m

53 민석이의 속력을 분속 x m, 수진이의 속력을 분속 y m라 하면

$${ \begin{cases} 4x + 4y = 1200 \\ 15x - 15y = 1200 \end{cases}} \rightarrow { \begin{cases} x + y = 300 \\ x - y = 80 \end{cases}}$$

x = 190, y = 110

따라서 민석이의 속력은 분속 190 m이다.

53-1 우혁이의 속력을 시속 $x \, \mathrm{km}$, 지영이의 속력을 시속 $y \, \mathrm{km}$ 라 하면

$$\begin{cases} \frac{3}{2}x - \frac{3}{2}y = 3 \\ \frac{1}{2}x + \frac{1}{2}y = 3 \end{cases} \Rightarrow \begin{cases} x - y = 2 \\ x + y = 6 \end{cases} \therefore x = 4, y = 2$$

따라서 지영이의 속력은 시속 2 km이다.

53-2 가람이의 속력을 분속 x m, 나영이의 속력을 분속 y m라 하면

x = 100, y = 60

따라서 가람이는 1분에 100 m를 이동한다.

유형 54 거리, 속력, 시간에 대한 문제 - 강물과 배의 속력 • 95쪽 •

54 시속 25 km

54-1 시속 16 km **54-2** 분속 25 m

54 배의 속력을 시속 x km. 강물의 속력을 시속 y km라 하면 갓을 따라 내려올 때의 배의 속력은 시속 (x+y) km. 갓을 거슬러 올라갈 때의 배의 속력은 시속 (x-y) km이므로

$${ \begin{cases} 3(x-y) = 60 \\ 2(x+y) = 60 \end{cases}} \rightarrow { \begin{cases} x-y = 20 \\ x+y = 30 \end{cases}}$$

x = 25, y = 5

따라서 정지한 물에서의 배의 속력은 시속 25 km이다.

54-1 카누의 속력을 시속 x km, 물의 속력을 시속 y km라 하면

$$\begin{cases} \frac{1}{3}(x+y)=8 \\ x-y=8 \end{cases} \Rightarrow \begin{cases} x+y=24 \\ x-y=8 \end{cases} \therefore x=16, y=8$$

따라서 카누의 속력은 시속 16 km이다.

54-2 A 선수가 수영하는 속력을 분속 x m. 강물의 속력을 분속 y m라 하면

$$\begin{cases} 8(x-y) = 400 \\ 4(x+y) = 400 \end{cases} \Rightarrow \begin{cases} x-y = 50 \\ x+y = 100 \end{cases} \quad \therefore x = 75, y = 25$$

따라서 강물의 속력은 분속 25 m이다.

거리, 속력, 시간에 대한 문제 유형 55 • 96쪽 ● - 기차가 터널 또는 다리를 지나는 경우

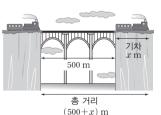
55 40 m

55-1 기차의 길이: 50 m. 기차의 속력: 초속 34 m

55 기차의 길이를 *x* m. 기차의 속력을 초속 y m라 하면

6500+x=30y950+x=55y

x = 40, y = 18따라서 기차의 길이는 40 m이다



55-1 기차의 길이를 x m, 기차의 속력을 초속 y m라 하면

$$\begin{cases} 970 + x = 30y \\ 2806 + x = 84y \end{cases} \therefore x = 50, y = 34$$

따라서 기차의 길이는 50 m. 기차의 속력은 초속 34 m

유형 56 농도에 대한 문제 - 소금물 또는 소금의 양 구하기 • 96쪽 •

56 5 %의 소금물 : 200 g. 15 %의 소금물 : 50 g

56-1 160 g **56-2** 100 g **56-3** 160 g

56 5 %의 소금물을 x g. 15 %의 소금물을 y g 섞는다고 하면

따라서 5 %의 소금물을 200 g. 15 %의 소금물을 50 g을 섞 어야 하다

56-1 3%의 소금물을 xg, 8%의 소금물을 yg 섞는다고 하면

$$\begin{cases} \frac{x+y=400}{3} \\ \frac{3}{100}x + \frac{8}{100}y = \frac{6}{100} \times 400 \end{cases} \rightarrow \begin{cases} \frac{x+y=400}{3x+8y=2400} \\ \end{cases}$$

 $\therefore x = 160, y = 240$

따라서 3 %의 소금물을 160 g을 섞어야 한다

56-2 12 %의 설탕물의 양을 x g. 더 넣어야 하는 설탕의 양을 y g이라 하면

$${ \begin{cases} x+y=400 \\ \frac{12}{100}x+y=\frac{34}{100} \times 400 \end{cases}} \rightarrow { \begin{cases} x+y=400 \\ 3x+25y=3400 \end{cases}}$$

x = 300, y = 100

따라서 더 넣어야 하는 설탕의 양은 100 g이다.

56-3 넣어야 하는 물의 양을 x g, 섞은 소금물의 양을 y g이라 하면 200+200+x=y

$$\left\{\frac{8}{100} \times 200 + \frac{6}{100} \times 200 = \frac{5}{100} \times y\right\}$$

x = 160, y = 560

따라서 더 넣어야하는 물의 양은 160 g이다.

유형 **57** 농도에 대한 문제 - 소금물의 농도 구하기 • 97쪽 •

57 A 소금물의 농도: 11 %. B 소금물의 농도: 6 %

57-1 9% **57-2** 난희. 로나

A 소금물의 농도를 x %. B 소금물의 농도를 y %라 하면

$$\begin{cases} \frac{x}{100} \times 200 + \frac{y}{100} \times 300 = \frac{8}{100} \times 500 \\ \frac{x}{100} \times 300 + \frac{y}{100} \times 200 = \frac{9}{100} \times 500 \end{cases}$$

$$\begin{cases} 2x + 3y = 40 \\ 3x + 2y = 45 \end{cases} \quad \therefore x = 11, y = 6$$

따라서 A 소금물의 농도는 11%, B 소금물의 농도는 6%이다.

57-1 A 소금물의 농도를 x %, B 소금물의 농도를 y %라 하면

$$\begin{cases} \frac{x}{100} \times 200 + \frac{y}{100} \times 100 = \frac{5}{100} \times 300 \\ \frac{x}{100} \times 100 + \frac{y}{100} \times 100 = \frac{6}{100} \times 200 \end{cases}$$

x = 3, y = 9

따라서 A 소금물의 농도는 3%, B 소금물의 농도는 9%이다.

57-2 A 설탕물의 농도를 x %, B 설탕물의 농도를 y %라 하면

$$\begin{cases} \frac{x}{100} \times 200 + \frac{y}{100} \times 300 = \frac{5}{100} \times 500 \\ \frac{x}{100} \times 400 + \frac{y}{100} \times 100 = \frac{3}{100} \times 500 \end{cases}$$

 $\therefore x=2, y=7$

도겸 : A 설탕물의 양을 알 수 없으므로 들어 있는 설탕의 양도 알 수 없다

로나: 3 %의 설탕물에 들어 있는 설탕의 양은

$$\frac{3}{100} \times (400 + 100) = 15(g)$$

유형 58 성분의 함량에 대한 문제

• 97쪽 •

58 240 g

58-1 A: 500 g, B: 750 g **58-2** 70 g

58 섭취해야할 A 식품의 양을 xg, B 식품의 양을 yg이라 하면

$$\left\{ \begin{array}{l} \frac{45}{100}x + \frac{10}{100}y = 60\\ \frac{30}{100}x + \frac{5}{100}y = 36 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 9x + 2y = 1200\\ 6x + y = 720 \end{array} \right.$$

x = 80, y = 240

따라서 B 식품을 240 g 섭취해야 한다.

58-1 A 물질을 x g, B 물질을 y g 녹인다면

$$\left\{ \begin{array}{l} \frac{20}{100}x + \frac{40}{100}y = 400 \\ \frac{30}{100}x + \frac{20}{100}y = 300 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x + 2y = 2000 \\ 3x + 2y = 3000 \end{array} \right.$$

 $\therefore x = 500, y = 750$

따라서 A 물질은 500 g. B 물질은 750 g을 녹여야 한다.

58-2 합금 A의 양을 x g, 합금 B의 양을 y g이라 하고 금의 양과 은의 양에 대한 연립일차방정식을 세우면

$$\begin{cases} \frac{1}{2}x + \frac{3}{4}y = 210 \times \frac{2}{3} \\ \frac{1}{2}x + \frac{1}{4}y = 210 \times \frac{1}{3} \end{cases} \rightarrow \begin{cases} 2x + 3y = 560 \\ 2x + y = 280 \end{cases}$$

x = 70, y = 140

따라서 합금 A는 70 g이 필요하다.

서술형 다지기

98~99쪽

1-1 1단계 일, 10, 10

2단계 11, 10, 45, 8, 3

3단계 83

- **1-2** 39
- **2-1** 1단계 20, 20 / 3, 4, 13 / 15 / 52, 15 2단계 7, 8, 8
- **2-2** 5 km
- **3-1** 8명
- **3-2** 4번
- **4-1** 합금 A: 1300 g, 합금 B: 800 g
- **4-2** A: 10 kg, B: 4 kg
- **1-2** 십의 자리의 숫자를 x, 일의 자리의 숫자를 y라 하면 \cdots **①**

$$\begin{cases} x+y=12 & \cdots \bigcirc \\ 10y+x=2(10x+y)+15 \end{cases} \Rightarrow \begin{cases} x+y=12 & \cdots \bigcirc \\ -19x+8y=15 \cdots \bigcirc \end{cases}$$
 \bigcirc \bigcirc 은을 연립하여 풀면 $x=3, y=9$ \cdots **2**

따라서 처음 수는 39이다.

... (3)

채점 요소	배점
$lue{lue}$ 미지수 x , y 정하기	2점
② 연립방정식 세우고 풀기	2점
❸ 처음 수 구하기	1점
총점	5점

2-2 올라간 거리를 x km, 내려간 거리를 y km라 하면

$$\begin{cases} \frac{x}{2} + \frac{30}{60} + \frac{y}{3} = 4 \\ x + y = 8 \end{cases} \rightarrow \begin{cases} 3x + 2y = 21 \cdots \bigcirc \\ x + y = 8 \cdots \bigcirc \end{cases} \cdots \mathbf{0}$$

 $\bigcirc -\bigcirc \times 2$ 를 하면 x=5

x=5를 \bigcirc 에 대입하여 풀면 y=3

... 2

따라서 호준이가 올라간 거리는 5 km이다.

... 🔞

채점 요소	배점
$lue{f 0}$ 미지수 x,y 정하고 연립방정식 세우기	3점
② x, y의 값 각각 구하기	2점
❸ 올라간 거리 구하기	1점
총점	6점

3-1 1단계

남자 회원 수를 x명, 여자 회원 수를 y명이라 하면

$${ \begin{cases} x+y=56 \\ \frac{1}{4}x+\frac{2}{3}y=24 \end{cases}} \rightarrow { \begin{cases} x+y=56 & \cdots \ \bigcirc \\ 3x+8y=288 & \cdots \ \bigcirc \end{cases}}$$

 \bigcirc . \bigcirc 을 연립해서 풀면 x=32 y=24따라서 남자 회원 수는 32명, 여자 회원 수는 24명이다.

방울토마토를 구매한 남자 회원 수는 $\frac{1}{4} \times 32 = 8$ (명)이다.

3-2 1쿼터와 2쿼터에 각각 쏘아 올린 슛의 횟수를 x번, y번이라

$$\left\{ \begin{array}{l} x+y=22 \\ \frac{3}{5}x+\frac{5}{6}y=22\times\frac{8}{11} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x+y=22 & \cdots \bigcirc \\ 18x+25y=480 \cdots \bigcirc \end{array} \right. \cdots \bigcirc \cdots \bigcirc$$

 \bigcirc . \bigcirc 을 연립해서 풀면 x=10 y=12

이므로 1쿼터와 2쿼터에서 쏘아 올린 슛의 횟수는 각각 10번, 12번이다.

따라서 허민이가 1쿼터에서 실패한 슛의 개수는

$$10-10 \times \frac{3}{5} = 4(번)$$
이다. ... ③

채점 요소	배점
$lackbox{1}{lackbox{1}{lackbox{1}{lackbox{1}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}{lackbox{1}{lackbox{2}}}}}}}}}}}}}}} $	3점
1쿼터와 2쿼터에서 쏘아 올린 슛의 횟수 각각 구하기	2점
❸ 1쿼터에서 실패한 슛의 개수	2점
총점	7점

4-1 1단계

합금 A의 양을 xg, 합금 B의 양을 yg이라 하면

$$\begin{cases} \frac{40}{100}x + \frac{10}{100}y = 600\\ \frac{20}{100}x + \frac{30}{100}y = 500 \end{cases} \rightarrow \begin{cases} 4x + y = 6000 & \cdots & \bigcirc \\ 2x + 3y = 5000 & \cdots & \bigcirc \end{cases}$$

2단계

①×3-①을 하면 10x=13000 ∴ x=1300 x=1300을 \bigcirc 에 대입하여 풀면 y=800

합금 A는 1300 g, 합금 B는 800 g이 필요하다.

4-2 합금 A의 양을 $x \log$, 합금 B의 양을 $y \log$ 이라 하면

$$\begin{cases}
\frac{40}{100}x + \frac{50}{100}y = 6 \\
\frac{60}{100}x + \frac{50}{100}y = 8
\end{cases}
\rightarrow
\begin{cases}
4x + 5y = 60 \\
6x + 5y = 80
\end{cases}
\dots \bullet$$

위 연립방정식을 풀면 x=10, y=4

따라서 합금 A는 10 kg. 합금 B는 4 kg이 필요하다. ... 3

채점 요소	배점
$lue{f 0}$ 미지수 x , y 를 정하고 연립방정식 세우기	4점
② 연립방정식 풀기	2점
❸ 답 구하기	1점
총점	7점

02 2 km

04 (1) m=1, n=42 (2) 10 %

 $\overline{\mathrm{BP}} = x \,\mathrm{cm}(0 \le x \le 30)$ 라 하면 … \ominus 01

 $\Box ABCD = 30 \times 20 = 600 \text{ (cm}^2)$

$$\triangle ABP = \frac{1}{2} \times x \times 20 = 10x(\text{cm}^2)$$

$$\triangle PCM = \frac{1}{2} \times (30 - x) \times 10 = (150 - 5x) (cm^2)$$

03 90

$$\triangle ADM = \frac{1}{2} \times 30 \times 10 = 150 (cm^2)$$

$$\triangle APM = \Box ABCD - (\triangle ABP + \triangle PCM + \triangle ADM)$$

$$= 600 - \{10x + (150 - 5x) + 150\}$$

$$= 300 - 5x(cm^{2})$$

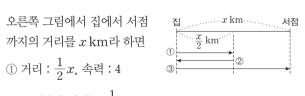
$$300-5x \le 600 \times \frac{5}{12}$$
에서 $300-5x \le 250$ $\therefore x \ge 10$

그런데 BP의 길이는 조건 ①을 만족시켜야 하므로

 $10 \le \overline{BP} \le 30$

따라서 a=10, b=30이므로 a+b=40

오른쪽 그림에서 집에서 서점 02



⇒ (걸린 시간)=
$$\frac{1}{2}x \div 4$$

= $\frac{x}{8}$ (시간)

② 거리: $\frac{1}{2}x$, 속력: 6

⇒ (걸린 시간)=
$$\frac{1}{2}x$$
÷6= $\frac{x}{12}$ (시간)

- ③ 거리 : x, 속력 : $6 \Rightarrow$ (걸린 시간)= $\frac{x}{6}$ (시간) 효성이는 45분 이내에 서점 앞에 도착해야 되므로 $\frac{x}{8} + \frac{x}{12} + \frac{x}{6} \le \frac{3}{4}$, $3x + 2x + 4x \le 18$, $9x \le 18$ $\therefore x \le 2$ 따라서 서점은 집으로부터 2 km 이내에 있다.
- 03 오후 6시에 공부하고 있던 여학생 수를 x명, 남학생 수를 y명이라 할 때,

오후 7시에 15명의 여학생이 먼저 집으로 간 후, 남학생 수 가 여학생 수의 2배이므로 2(x-15)=y … \bigcirc

오후 8시 반에 45명의 남학생이 집으로 돌아가자, 남은 학생 수는 여학생 수가 남학생 수의 5배이므로

x-15=5(y-45) ... \bigcirc

 \bigcirc , \bigcirc 을 연립하여 풀면 $x{=}40$, $y{=}50$

따라서 a=40+50=90

04 (1) 소금물 A와 소금물 B를 각각 a g씩 섞으면 (단, a > 0)

$$\frac{x}{100}\!\times\! a\!+\!\frac{y}{100}\!\times\! a\!=\!\frac{6.5}{100}\!\times\! (a\!+\!a) \Longrightarrow x\!+\!y\!=\!13$$

소금물 A를 3b g, 소금물 B를 4b g 섞으면 (단, b>0)

$$\frac{x}{100} \! \times \! 3b \! + \! \frac{y}{100} \! \times \! 4b \! = \! \frac{6}{100} \! \times \! (3b \! + \! 4b)$$

 \Rightarrow 3x+4y=42

$$^{(2)}$$
 $\left\{egin{array}{l} x+y=13 \\ 3x+4y=42 \end{array}
ight.$ 를 연립하여 풀면 x =10, y =3

따라서 소금물 A의 농도는 10 %이다.

Ⅳ. 일차함수

1 일차함수와 그래프

🔔 개념 다지기

■ 103쪽, 105쪽 ●

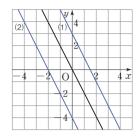
- **01** (1) 풀이 참조, *y*는 *x*의 함수이다.
 - (2) 풀이 참조, y는 x의 함수가 아니다.
 - (3) 풀이 참조, *y*는 *x*의 함수이다.
- **02** (1) −15 (2) 6 (3) 21 **03** 47∦
- **04** (1) **9** (2) **-11** (3) **-1** (4) **4**
- **05** (1) 1 (2) -5 (3) $\frac{5}{2}$ (4) -4
- **06** (1) 풀이 참조 (2) 풀이 참조
- **07** (1) y=2x+5 (2) y=4x-3 (3) $y=-x+\frac{1}{2}$ (4) $y=-\frac{1}{5}x-4$
- **08** (1) x절편 : 2, y절편 : 3 (2) x절편 : 4, y절편 : -1
- **09** (1) x절편 : 2 y절편 : -6 (2) x절편 : 3 y절편 : 3
 - (3) x절편: 8 y절편: -4 (4) x절편: -6 y절편: 10
- **10** (1) 풀이 참조 (2) 풀이 참조
- **11** (1) 2 (2) -3 (3) 6 (4) $\frac{5}{2}$ **12** (1) 2 (2) 1 (3) $-\frac{1}{2}$
- **13** (1) 풀이 참조 (2) 풀이 참조
- x(개)
 1
 2
 3
 4
 ...

 y(원)
 500
 1000
 1500
 2000
 ...

(2)	\boldsymbol{x}	1	2	3	4	•••
	y	1	1, 2	1, 3	1, 2, 4	•••
(3)	00	1	2	3	4	•••
	\boldsymbol{x}	1	2	3	4	
	y	60	30	20	15	•••

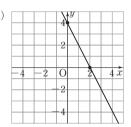
- **02** (1) $f(5) = -3 \times 5 = -15$ (2) $f(-2) = -3 \times (-2) = 6$ (3) f(-2) - f(5) = 6 - (-15) = 21
- **03** 일차함수는 ㄱ, ㄷ, ㄹ, ㅁ의 4개이다.
- **04** (1) $f(3) = 4 \times 3 3 = 9$ (2) $f(-2) = 4 \times (-2) - 3 = -11$ (3) f(a) = 4a - 3 = -7 에서 a = -1(4) f(b) = 4b - 3 = 13 에서 b = 4

06



09 y=0일 때의 x의 값이 x절편이고 x=0일 때의 y의 값이 y절 편이다.

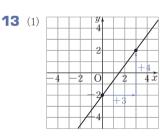
10 (1) [

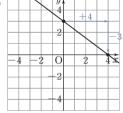


- (1) x절편은 2. y절편은 4이므로 두 점 (2, 0). (0, 4)를 지나 는 직선을 그린다.
- (2) x절편은 3. y절편은 -2이므로 두 점 (3, 0). (0, -2)를 지나는 직선을 그린다.
- **11** x의 값의 증가량에 대한 y의 값의 증가량의 비율은 상수항 부 분에 상관없이 x의 계수이다.

12 (1) (기술기)= $\frac{7-3}{3-1}$ =2

(3) (기술기)=
$$\frac{4-2}{-5-(-1)}$$
= $-\frac{1}{2}$





유형 다지기

유형 01 함수와 함숫값

106쪽

01 ③

01-1 ③. ④ **01-2** ⑤ **01-3** 8 **01-4** ③ **01-5** ⑤

- **01** ③ x=10인 경우 y의 값은 다음과 같이 2개 이상이 된다. 가로의 길이 : 4 cm. 세로의 길이 : 1 cm ⇒ 넓이 4 cm² 가로의 길이: 3 cm. 세로의 길이: 2 cm ➡ 넓이 6 cm²
- **01-1** ① x의 값에 대하여 y의 값이 여러 개 결정된다.
 - ② x=1일 때, y=-1, 1이므로 함수가 아니다.
 - ③ x의 값에 대하여 y의 값은 하나로 정해진다.
 - $\bigcirc 4 \ y = 100 x$
 - (5) x의 값에 대하여 y의 값이 여러 개 결정된다.
- **01-2** $(5) f(3) = -2 \times 3 + 7 = 1$
- **01-3** (7) y = 6x : a = 6(1) y = 2x + 4 = 2(x+2)b=2 $\therefore a+b=8$
- **01-4** $f(a) = \frac{24}{a} = -6$ 에서 a = -4 $f(2) = \frac{24}{2} = b$ b = 12f(a+b)=f(8)=3
- **01-5** f(4) = 4a 4 = 10 에서 $a = \frac{7}{2}$ $f(4a) = f(14) = \frac{7}{2} \times 14 - 4 = 45$

유형 02 일차함수의 뜻

107쪽

02 ②. ③

02-1 ㄱ. ㄹ 02-2 (4)

- **02** ① $y = \frac{1}{2}x \frac{1}{2}$ ② $y = 1 + \frac{3}{x}$
 - ③ y = -8
- ⓐ y = 4x + 2
- (5) y = -2x + 4
- **02-1** $\neg y = 5000 300x$ $rac{1200}{r}$ $rac{197}{r}$ = 2(x+y) = 76 $\therefore y = 38-x$
- **02-2** $y=ax+x(2bx-3)=(a-3)x+2bx^2$ 일차함수가 되기 위해서는 $a-3 \neq 0$. 2b=0 $\therefore a \neq 3, b = 0$

유형 03 일차함수의 함숫값 구하기

• 107쪽 •

03 3

03-1 ① **03-2** 9 **03-3** 7

03
$$f(-3) = \frac{1}{2} \times (-3) - 1 = -\frac{5}{2}$$

 $f(2) = \frac{1}{2} \times 2 - 1 = 0$
 $\therefore 2f(-3) + f(2) = 2 \times \left(-\frac{5}{2}\right) + 0 = -5$

03-1
$$f(a) = -\frac{3}{2}a + 3 = 6$$

03-2
$$f(-1) = -2a + 15 = -3$$
에서 $a = 9$
$$f(x) = 18x + 15$$
에서 $f\left(-\frac{1}{3}\right) = 18 \times \left(-\frac{1}{3}\right) + 15 = 9$

03-3
$$f(-1) = -a + b = -5$$
 ··· ⓒ $f(2) = 2a + b = 1$ ··· ⓒ ⓒ 연립하여 풀면 $a = 2$, $b = -3$ ··· $f(x) = 2x - 3$ ··· $f(a-b) = f(5) = 2 \times 5 - 3 = 7$

유형 04 일차함수의 그래프 위의 점을 알 때 미지수 구하기 • 108쪽 •

04 2

04-1 2 **04-2** 2 **04-3** -12

- 94 y=ax-2의 그래프가 점 (1, 3)을 지나므로
 x=1, y=3을 대입하면
 3=a-2에서 a=5
 따라서 함수의 식은 y=5x-2이고 이 함수의 그래프 위에
 있는 점은 ②(-1, -7)이다.
- **04-1** k-1=-2k+5, 3k=6 ∴ k=2
- **04-2** y=5x+b에 x=3, y=9를 대입하면 9=15+b∴ b=-6y=5x-6에 x=a, y=2a를 대입하면 2a=5a-6-3a=-6 ∴ a=2
- **04-3** y=2x-8에 x=b, y=-6을 대입하여 풀면 b=1 y=ax+7에 x=1, y=-6을 대입하여 풀면 a=-13 ∴ a+b=-12

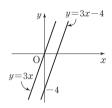
유형 05 일차함수의 그래프의 평행이동

• 108쪽 •

05 ③

05-1 제2사분면 **05-2** -20

- **05** y=-4x+3의 그래프를 y축의 방향으로 -2만큼 평행이 동했으므로 y=-4x+3-2=-4x+1
- 05-1 오른쪽 그림에서 y=3x의 그래프를 y축의 방향으로 -4만큼 평행이동한 그래프의 식은 y=3x-4이고이 그래프는 제2사분면을 지나지않는다.



05-2 $y=\frac{1}{2}ax-b+3$ 의 그래프를 y축의 음의 방향으로 2만큼 평행이동한 그래프의 식은 $y=\frac{1}{2}ax-b+1$ $\frac{1}{2}a=-4,\ -b+1=-\frac{3}{2}$ 에서 $a=-8,\ b=\frac{5}{2}$ $\therefore ab=-8\times\frac{5}{2}=-20$

유형 06 평행이동한 그래프 위의 점

109쪽

06 a = -2, b = 3

06-1 ⑤ **06-2** 8

- 06 y=ax+3의 그래프를 y축의 방향으로 -2만큼 평행이동한 그래프의 식은 y=ax+1y=ax+1의 그래프가 점 (-2,5)를 지나므로 5=-2a+1 $\therefore a=-2$ y=-2x+1의 그래프가 점 (b,-5)를 지나므로 -5=-2b+1 $\therefore b=3$
- **06-1** 평행이동한 그래프의 식은 y=-3x+2-3=-3x-1 ⑤ $-1\neq -3\times 2-1$

 $\therefore a=-2, b=6$

따라서 b-a=8

유형 **07** 일차함수의 그래프의 x절편, y절편 • 109쪽

07 (5)

07-1 5 **07-2** 0

- 90을 각각 대입하여 x의 값을 구하면
 ①, ②, ③, ④ x=4
 ⑤ x=-4
- **07-1** $y = -\frac{3}{2}x + 3$ 에서 y = 0일 때, x = 2 $\therefore m = 2$ x = 0일 때, y = 3 $\therefore m + n = 5$
- 07-2 y=5x+4의 그래프를 y축의 방향으로 -7만큼 이동한 그래프가 나타내는 일차함수의 식은 y=5x-3
 함수 y=5x-3의 그래프의 x절편은 3/5, y절편은 -3
 ∴ 5a+b=3+(-3)=0

08 3

08-1 -1 **08-2** 6

- 08 x절편이 -4이므로 y=0일 때, x=-4이다. $0=\frac{3}{4}\times (-4)+a \qquad \therefore a=3$
- **08-1** $y=\frac{6}{5}x-6$ 에서 y=0을 대입하면 $0=\frac{6}{5}x-6$ 이므로 x=5 $\therefore (x$ 절편)=5 $y=\frac{1}{2}x+3-2b$ 의 그래프의 y절편이 5이므로 $5=\frac{1}{2}\times 0+3-2b$ $\therefore b=-1$
- **08-2** x절편이 $\frac{1}{4}$ 이므로 $0=\frac{1}{4}a-3$ $\therefore a=12$ y=12x-3+b의 그래프가 점 (-1,3)을 지나므로 3=-12-3+b $\therefore b=18$ $\therefore 2a-b=24-18=6$

유형 09 일차함수의 그래프의 기울기

110쪽

09 4

- **09-1 5 09-2** $-\frac{4}{3}$ **09-3** -1
- $(기울기) = \frac{2}{-1-3} = -\frac{1}{2}$ 따라서 x의 계수가 $-\frac{1}{2}$ 인 것은 ④이다.
- 09-1① y=ax+4에 점 (-1,2)를 대입하여 풀면 a=2②, ③ y=2x+4에서 (x절편)=-2, (y절편)=4④ y=2x+4에 x=1을 대입하면 y=6⑤ y=2x+4의 기울기는 2이므로 x의 값이 2만큼 감소할때, y의 값도 4만큼 감소한다. 즉, $\frac{-4}{2}=2$
- 09-2 $y=\frac{1}{4}x-3$ 의 y절편은 -3이므로 a=-3 y=-4x+7의 기울기는 -4이므로 b=-4 y=-3x-4에서 y=0일 때, 0=-3x-4이므로 $x=-\frac{4}{3}$
- $09-3 \quad a = (7)울7) = \frac{(y \circ 1)}{(x \circ 1)} \stackrel{\circ}{\to} \frac{3}{(x \circ 1)} = \frac{f(2) f(1)}{2 1} = \frac{1}{2}$ $b = (y \circ 2) = f(0) = -\frac{3}{2}$ $\therefore a + b = \frac{1}{2} \frac{3}{2} = -1$

유형 10 두 점을 지나는 일차함수의 그래프의 기울기 • 111쪽 •

10 - 2

10-1 5 10-2 1 10-3 -6 10-4 $\frac{3}{2}$

- 10 (기술기)= $\frac{3-7}{k-(-1)}$ = $-\frac{4}{k+1}$ =4 ∴ k=-2
- **10-1** 그래프가 두 점 (3, 0), (0, a)를 지나므로 (7|울기 $)=\frac{a-0}{0-3}=-2$ $\therefore a=6$
- **10-2** 두 점 (-3, 3), (0, 6)을 지나므로 기울기는 $\frac{6-3}{0-(-3)}$ =1

10-3 (기술기)=
$$\frac{6-2}{-5-1}$$
= $-\frac{2}{3}$

10-4
$$y=ax+b$$
의 그래프는 $y=-x+4$ 의 그래프와 x 절편이 같고 $y=5x-6$ 의 그래프와 y 절편이 같다.

$$y = -x + 4$$
의 그래프의 x 절편은 4

$$y=5x-6$$
의 그래프의 y 절편은 -6 이므로

$$y=ax+b$$
의 그래프는 두 점 $(4,0),(0,-6)$ 을 지난다.

$$\therefore (7[£7]) = \frac{-6-0}{0-4} = \frac{3}{2}$$

유형 11 세점이 한 직선 위에 있을 때 미지수의 값 구하기 • 112쪽 •

11 $\frac{4}{3}$

11-1 6 **11-2** 3

11 두 점 (-2, -2), (1, 0)을 지나는 직선의 기울기는

$$\frac{0-(-2)}{1-(-2)} = \frac{2}{3}$$

두 점 (1, 0). (3, a)를 지나는 직선의 기울기는

$$\frac{a-0}{3-1} = \frac{a}{2}$$

$$\frac{2}{3} = \frac{a}{2}$$
 에서 $a = \frac{4}{3}$

11-1 세 점 (-2, 6), (2, 0), (a, -6)은 한 직선 위에 있으므로

$$\frac{-6-0}{a-2} = \frac{0-6}{2-(-2)}$$

$$\frac{-6}{a-2} = \frac{-6}{4}$$
, $a-2=4$: $a=6$

11-2
$$\frac{2k+1-10}{k-4} = \frac{10-(-8)}{4-(-2)}$$
이므로

$$\frac{2k-9}{k-4} = \frac{18}{6}$$
, $2k-9=3(k-4)$: $k=3$

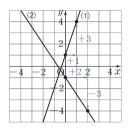
유형 12 일차함수의 그래프 그리기

112쪽

12 5

- **12-1** (1) 풀이 참조 (2) 풀이 참조 **12-2** ③
- 12 x절편이 2이고 y절편이 1이므로 주어진 함수의 그래프는 두점(2,0),(0,1)을 지난다.

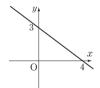
12-1



12-2 $y = -\frac{3}{4}x + 3$ 의 그래프는

오른쪽 그림과 같으므로

제3사분면을 지나지 않는다.



일차함수의 그래프와 x축, y축으로 둘러싸인 도형의 넓이

113쪽

13 9

13-1
$$\frac{2}{2}$$

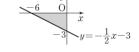
13-2 (1) **6.** -6a (2) -1

13 $y = -\frac{1}{2}x - 3$ 의 그래프의

x절편이 -6, y절편이

-3이므로 그래프는

오른쪽 그림과 같다.



따라서 구하는 넓이는 $\frac{1}{2} \times 6 \times 3 = 9$

13-1 B(0, 6)이고 △AOB의 넓이가 27이므로

$$\frac{1}{2} \times \overline{OA} \times 6 = 27$$

 $\therefore \overline{OA} = 9$

따라서 y=ax+6의 그래프가 점 A(-9,0)을 지나므로

$$a=\frac{2}{3}$$

13-2 (1) y=ax-6a에 y=0을 대입하면 x=6

∴ (*x*절편)=6

y=ax-6a에 x=0을 대입하면 y=-6a

∴ (y절편)=-6a

$$(2) 72\pi = \frac{1}{3} \times \pi \times 6^2 \times (-6a)$$

 $72\pi = -72a\pi$ $\therefore a = -1$

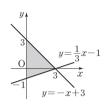
두 일차함수의 그래프와 x축 또는 y축으로 둘러싸인 도형의 넓이

• 113쪽 •

14 6

14-1 $\frac{1}{2}$ **14-2** 20

14 y=-x+3과 $y=\frac{1}{3}x-1$ 의 x절편, y절편을 각각 구해 각각의 함수의 그래프를 그리면 오른쪽 그림과 같다. 따라서 구하는 도형의 넓이는 $\frac{1}{2}\times\{3-(-1)\}\times 3=6$



14-1 y=ax+4와 y=-x+4의 그래프의 y절편은 4이므로 A(0,4) y=-x+4의 그래프의 x절편은 4이므로 C(4,0)

이때 $\triangle ABC$ 의 넓이가 24이므로 $\frac{1}{2} \times \overline{BC} \times 4 = 24$

∴ BC=12

따라서 y=ax+4의 그래프가 점 $\mathrm{B}(-8,\,0)$ 을 지나므로 $a=\frac{1}{2}$

14-2 $y=-\frac{1}{2}x+6$ 의 그래프의 x절편과 y절편은 각각 12, 6 $y=-\frac{1}{2}x+6-2$, 즉 $y=-\frac{1}{2}x+4$ 의 그래프의 x절편과 y절편은 각각 8, 4

따라서 사각형 ABCD의 넓이는

$$\triangle AOD - \triangle BOC = \frac{1}{2} \times 12 \times 6 - \frac{1}{2} \times 8 \times 4$$
$$= 36 - 16 = 20$$

• 114~115쪽 •

1-1 1단계 -5, 2

2단계 12, 2, 12, 2, 8

3단계 2, 8, -2

1-2 6

2-1 1∃⅓ −2*x*+6

2단계 -2, 3, 3, 6, 6

3단계 -2, 3, 6, 7

2-2 -13

3-1 4

3-2 -1

4-1 $\frac{1}{4}$

4-2 6

1-2 f(4)=4a=28 $\forall k \mid a=7$... f(x)=7x $\frac{1}{3}f(3)+\frac{1}{7}f(-2)=\frac{1}{3}\times 21+\frac{1}{7}\times (-14)=5$ 5=f(k)-37

채점 요소	배점
❶ <i>a</i> 의 값 구하기	2점
❷ k의 값 구하기	3점
총점	5점

2-2 일차함수 y=3x-9의 그래프를 y축의 방향으로 -3만큼 평행이동한 그래프가 나타내는 일차함수의 식은

$$y=3x-12$$
 … ①
일차함수 $y=3x-12$ 의 그래프의 기울기는 3 $\therefore a=3$

일차함수 y=3x-12의 그래프의 기울기는 3 $\therefore a=3$ 일차함수 y=3x-12의 그래프의 x절편은 4, y절편은 -12

$$a-b+c=3-4+(-12)=-13$$
 ... 3

채점 요소	배점
❶ 평행이동한 그래프가 나타내는 일차함수의 식 구하기	2점
② a, b, c의 값 각각 구하기	3점
③ <i>a−b+c</i> 의 값 구하기	1점
총점	6점

3-1 1단계

$$(7]$$
울기)= $\frac{-4-5}{m-(-2)}=\frac{-9}{m+2}$

2단계

$$(7)$$
울기)= $\frac{-1-5}{2-(-2)}$ = $-\frac{3}{2}$

3단계

세 점이 한 직선 위에 있으므로 기울기가 같다.

$$\frac{-9}{m+2} = -\frac{3}{2}$$
, $3(m+2) = 18$ $\therefore m = 4$

3-2 세 점 (4, 5), (-3, -9), (1, k)는 한 직선 위에 있으므로 어떤 두 점을 택하여도 기울기는 일정하다. ... **①** 두 점 (4, 5), (-3, -9)를 지나는 직선의 기울기는

$$\frac{5-(-9)}{4-(-3)}=2$$

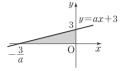
두 점 (4, 5), (1, k)를 지나는 직선의 기울기는

$$\frac{5-k}{4-1} = \frac{5-k}{3} \qquad \cdots 2$$

채점 요소	배점
● 세 점이 한 직선 위에 있음을 이해하기	1점
② 어떤 두 점을 선택했을 때 각각의 기울기 구하기	4점
③ 상수 k의 값 구하기	2점
총점	7점

4-1 1단계

y=ax+3의 그래프의 x절편은 $-\frac{3}{a}$, y절편은 3



그래프와 x축, y축으로 둘러싸인 삼각형의 넓이는

$$\frac{1}{2} \times \frac{3}{a} \times 3 = \frac{9}{2a}$$

삼각형의 넓이가 18이므로

$$\frac{9}{2a}$$
 = 18, $2a = \frac{9}{18}$: $a = \frac{1}{4}$

4-2 y=a(x+3)의 그래프의 x절편은 0=a(x+3)에서 x=-3이므로 -3이고. y절편은 3a이다. ... ① 그래프와 x축, y축으로 둘러싸인 삼각 형의 넓이가 27이므로

$$\frac{1}{2} \times 3 \times 3a = 27$$

$$\frac{9}{2}a = 27$$
 : $a = 6$

..개념 다지기

117쪽, 119쪽 •

- **01** 4. 위. -8. 음. 2
- 02(1) 기(2) 도(3) 노(4) ㄹ
- **03** (1) (나)와 (다), (마)와 (바) (2) (가)와 (라)
- **04** (1) a = -2, $b \neq -5$ (2) a = -2, b = -5
- **05** (1) y = -4x + 2(2) y = x + 3
 - (3) y = 2x + 5
- (4) y = -3x + 9
- **06** (1) $y = -\frac{1}{3}x + 1$ (2) y = -2x + 9

 - (3) y = x + 7 (4) $y = \frac{1}{4}x 2$
- **07** (1) 45
- (2) $y = \frac{7}{5}x + 10$
- **08** (1) y = 20 0.5x
- (2) $0 \le x \le 40$
- (3) 10 cm
- **09** y = 6 3x
- **10** (1) $\frac{1}{18}$ L (2) $y = 10 \frac{1}{18}x$ (3) 8 L
- **11** (1) y = 0.2x + 1
- (2) y = 10000 1000x
- (3) y = -5x + 100
- **12** (1) y = 30 2x
- (2) 20 L
- **05** (2) y=x+b에 (1, 4)를 대입하여 풀면 b=3
 - $(3)(7[울7]) = \frac{5-3}{0-(-1)} = 2$ 이므로

y=2x+b에 (0, 5)를 대입하면 b=5 : y=2x+5

- (4) (기울기)= $-\frac{9}{3}$ =-3, y절편은 9이므로 y=-3x+9
- **06** (1) 기울기는 $-\frac{1}{3}$ 이고 y절편은 1이므로 $y = -\frac{1}{3}x + 1$
 - (2) y = -2x + b에 (2, 5)를 대입하여 풀면 b = 9
 - $\therefore y = -2x + 9$
 - $(3)(7)울7)=\frac{9-3}{2-(-4)}=1이므로$

y=x+b에 (2, 9)를 대입하여 풀면 b=7

- $\therefore y = x + 7$
- (4) (기울기)= $-\frac{-2}{8}=\frac{1}{4}$, y절편은 -2이므로 $y=\frac{1}{4}x-2$
- **07** (1) 5분마다 7 °C씩 올라가므로 *a*=38+7=45(°C)
 - (2) 1분마다 온도가 $7 \div 5 = \frac{7}{5}$ (°C)씩 올라가고 처음 온도가
 - 10 °C이므로 x와 y 사이의 관계식은 $y = \frac{7}{5}x + 10$

- **08** (1) 초에 불을 붙이면 2분마다 길이가 1 cm씩 짧아진다. 따라서 x분 후에는 0.5x cm가 짧아지고 처음 초의 길이 가 20 cm이므로 y = 20 0.5x
 - (2) 1분마다 0.5 cm가 짧아지고 처음 초의 길이가 20 cm이 므로 다 타는데 20÷0.5=40(분)이 걸린다.
 - $\therefore 0 \le x \le 40$
 - (3) x=20을 대입하면 $y=20-0.5\times 20=10$
- **09** x시간 동안 걸은 거리는 3x km이므로 y=6-3x
- **10** (1) $1 \div 18 = \frac{1}{18}(L)$
 - (3) $y = 10 \frac{1}{18} \times 36 = 8(L)$
- **12** (1) 두 점 (0, 30), (15, 0)을 지나는 직선의 그래프의 식을 구하면 y=30-2x
 - (2) $y = 30 2 \times 5 = 20(L)$

유형 **15** 일차함수 y=ax+b의 그래프의 성질 • 120쪽 •

15 (5)

15-1 ②, ③, ⑤ **15-2** ③ **15-3** ④

- **15** ⑤ y=ax의 그래프를 y축의 방향으로 b만큼 평행이동한 것이다.
- **15-1** 일차함수 y=ax+b의 그래프에서 x의 값이 증가할 때, y의 값이 감소하기 위한 조건은 a<0이다.
- **15-2** ③ $y = -\frac{2}{3}x + 6$ 의 그래프는 (기울기)<0, (y절편)>0이 므로 제1, 2, 4사분면을 지난다.
- **15-3** 일차함수 y=ax-8에 점 (-3, 4)를 대입하면 4=-3a-8 ∴ a=-4
 - ④ 일차함수 y = -4x 8의 그래프는 일차함수 y = -4x를 y축의 방향으로 -8만큼 평행이동하면 일치한다.

유형 **16** 일차함수 y=ax+b의 그래프와 a,b의 부호 • 120쪽 •

16 a < 0, b < 0

16-1 © 16-2 제1사분면 16-3 ⑤ 16-4 ⑤

- 16 그래프가 오른쪽 위로 향하므로 기울기는 양수이고, y축과 음의 부분에서 만나므로 y절편은 음수이다. 따라서 -a>0, b<0이므로 a<0, b<0
- **16-1** (기울기)=a<0, (y절편)=-b>0이므로 가장 알맞은 그래프는 \bigcirc 이다.
- 16-2 주어진 그래프에서 (기울기)>0, (y절편)>0이므로 a>0, -b>0
 ∴ a>0, b<0
 y=-1/ax+b의 그래프는 (기울기)=-1/a<0
 (y절편)=b<0이므로 제1사분면을 지나지 않는다.
- **16-3** ab < 0에서 a, b의 부호는 다르다. ac > 0에서 a, c의 부호는 같다. 즉, a > 0, b < 0, c > 0 또는 a < 0, b > 0, c < 0 따라서 $(7]울7) = -\frac{b}{a} > 0$, (y절편) $= \frac{c}{b} < 0$ 이므로 $y = -\frac{b}{a}x + \frac{c}{b}$ 의 그래프는 제1, 3, 4사분면을 지난다.
- **16-4** 제3사분면을 지나지 않으므로 (기울기)<0, (y절편) ≥ 0 2a-3<0에서 $a<\frac{3}{2}$ $2a\ge 0$ 에서 $a\ge 0$ $\therefore 0\le a<\frac{3}{2}$

유형 17 일차함수의 평행과 일치

• 121쪽 **•**

17 (4)

17-1 6 **17-2** -10 **17-3** ⑤ **17-4** -2 **17-5** 창민, 하선

- 17 주어진 그래프는 기울기가 $\frac{1}{2}$ 이고 y절편이 -1이므로 기울기가 같고 y절편이 다른 것을 찾으면 $4y = 2\left(\frac{1}{4}x 1\right) = \frac{1}{2}x 2$ 이다.
 - |참고| ② $y = \frac{1}{2}(x-2) = \frac{1}{2}x-1$ 은 주어진 그래프와 일치한다. 평행한 그래프로 착각하지 않도록 한다.
- **17-1** y=-2x-7+b의 그래프와 y=ax+1의 그래프는 일치하므로 -2=a, -7+b=1 $\therefore a=-2$, b=8이므로 a+b=6

17-2 $y = \frac{a}{2}x - 3$ 의 그래프와 y = -4x + 7의 그래프가 평행하므로

$$\frac{a}{2} = -4$$
 $\therefore a = -8$

y = -4x - 3의 그래프가 점(b, 5)를 지나므로

$$5 = -4 \times b - 3$$

- $\therefore b = -2$
- $\therefore a+b=-10$
- **17-3** 일치하는 두 일차함수의 그래프는 기울기와 y절편이 서로 같으므로

$$2m-n=3n$$
에서 $2m-4n=0$

- ... (¬)
- -3m+2=6n-5m에서 2m-6n=-2 ··· ©
- \bigcirc . \bigcirc 을 연립하여 풀면 m=2. n=1
- $\therefore m+n=3$
- **17-4** 두 점 (1, 4), (3, p)를 지나는 직선의 기울기는

$$\frac{p-4}{3-1} = \frac{p-4}{2}$$

y = -3x - 4의 그래프와 평행하므로

$$\frac{p-4}{2} = -3, p-4 = -6$$
 : $p = -2$

17-5 주어진 일차함수의 그래프의 기울기는 $-\frac{3}{5}$ 이고

y절편은 −3이다.

태희 : 기울기는 $-\frac{5}{3}$, y절편은 5 ➡ 평행하지 않는다.

창민 : 기울기는 $-\frac{3}{5}$, y절편은 $3 \Rightarrow$ 평행

준영 : 기울기는 $\frac{3}{5}$, y절편은 $-3 \Rightarrow$ 평행하지 않는다.

하선 : 기울기는 $-\frac{3}{5}$, y절편은 $-6 \Rightarrow$ 평행

유형 **18** 기울기와 *y*절편을 알 때

• 122쪽 ●

18 y = -2x + 2

18-1 ② **18-2** 2

- **18** (기울기)= $\frac{-4}{2}$ =-2, (y절편)=2
 - $\therefore y = -2x + 2$
- **18-1** y = -7x + 10의 그래프와 평행하므로 기울기는 -7이고 y절편은 -5이므로

구하는 식은 y = -7x - 5

 $\therefore a = -7, b = -5$ 이므로 a + b = -12

18-2 기울기가 $\frac{5}{3}$ 이고 y축과의 교점이 (0, 2)인 일차함수의

식은
$$y = \frac{5}{3}x + 2$$

 $y=\frac{5}{3}x+2$ 에 (a-2, 2a)를 대입하면 $2a=\frac{5}{3}(a-2)+2$

$$6a = 5a - 10 + 6$$
 : $a = -4$

 $y=\frac{5}{3}x+2$ 에 (b, 0)을 대입하면 $0=\frac{5}{3}b+2$

- $\therefore b = -\frac{6}{5}$
- a 5b = -4 + 6 = 2

유형 19 기울기와 한 점의 좌표를 알 때

• 123쪽 **•**

19 ①

19-1
$$-\frac{8}{5}$$
 19-2 4

- 19 y=4x+b로 놓고 x=1, y=-2를 대입하면
 -2=4+b ∴ b=-6
 따라서 y=4x-6의 그래프에서 y절편은 -6이다.
- **19-1** (기울기)= $\frac{6}{-3}$ =-2 $\therefore a=-2$

y=-2x+b의 그래프와 y=5x-2의 그래프와 x절편이 가이므로

$$\frac{b}{2} = \frac{2}{5} \qquad \therefore b = \frac{4}{5}$$

:
$$ab = -2 \times \frac{4}{5} = -\frac{8}{5}$$

19-2 (기울기)= $\frac{1}{2}$ 이므로 $y=\frac{1}{2}x+b$ 에 x=2, y=3을

대입하여 풀면 b=2

따라서 $y=\frac{1}{2}x+2$ 의 그래프는

오른쪽 그림과 같으므로 구하는

 $y = \frac{1}{2}x + 2$ $y = \frac{1}{2}x + 2$ $-4 \qquad 0 \qquad x$

넓이는 $\frac{1}{2} \times 4 \times 2 = 4$

유형 **20** 서로 다른 두 점의 좌표를 알 때

123쪽

20 -9

20-1
$$y = \frac{3}{2}x + 6$$
 20-2 2

- 20 $(7)울7) = \frac{-3-6}{2-(-1)} = -3$ 이므로 a = -3 y = -3x + c의 그래프가 점 (-1, 6)을 지나므로 6 = 3 + c에서 c = 3 y = -3x + 3의 x절편은 1 $\therefore b = 1$ $\therefore abc = -3 \times 1 \times 3 = -9$
- **20-1** 주어진 그래프에서 (기울기)= $\frac{2-(-1)}{2-0}=\frac{3}{2}$ $\therefore y=\frac{3}{2}x+b$ 에 (-2,3)을 대입하여 풀면 b=6 $\therefore y=\frac{3}{2}x+6$
- 20-2 두 점 (-6, 13), (-2, 5)를 지나므로 $(기울기) = \frac{5-13}{-2-(-6)} = -2 \qquad \therefore a = -2$ y = -2x + b에 x = -2, y = 5를 대입하여 풀면 b = 1 y = -2x + 1의 그래프가 점 (2, k)를 지나므로 k = -4 + 1 = -3 $\therefore a + b k = -2 + 1 + 3 = 2$

$^{ m Re}$ 21 x절편과 y절편을 알 때

• 124쪽 •

21 $\frac{1}{2}$

21-1 -1 **21-2** -3 **21-3**
$$y = -3x - 6$$

- 21 두 점 (6,0), (0,-3)을 지나므로 $(기울기)=\frac{1}{2}$ $\therefore y=\frac{1}{2}x-3$ 이때 $y=\frac{1}{2}x-3+4=\frac{1}{2}x+1$ 의 그래프가 점 (-2a,a)를 지나므로 $a=\frac{1}{2}\times(-2a)+1$, 2a=1 $\therefore a=\frac{1}{2}$
- 21-1 x절편이 -4, y절편이 -3이므로 두 점 (-4,0), (0,-3)을 지난다. $(기울기) = \frac{-3-0}{0-(-4)} = -\frac{3}{4}$ 이므로 $y = -\frac{3}{4}x 3$ 이 함수의 그래프가 점 $\left(-\frac{8}{3},p\right)$ 를 지나므로 $p = -\frac{3}{4} \times \left(-\frac{8}{3}\right) 3 = -1$
- **21-2** 주어진 그래프의 기울기가 $-\frac{2}{3}$ 이므로 $a=-\frac{2}{3}$ $y=-\frac{2}{3}x+b$ 에 x=3, y=-1을 대입하여 풀면 b=1 $\therefore 3a-b=-2-1=-3$

21-3 $y = \frac{1}{2}x + 1$ 의 그래프의 x절편은 -2 $y = -\frac{2}{3}x - 6$ 의 그래프의 y절편은 -6이므로 (-2,0),(0,-6)을 지나는 직선의 그래프의 식은 $\therefore y = -3x - 6$

유형 22 온도에 대한 문제

• 124쪽 ·

22 17분 후

22-1 (1) $y=15-6x(0 \le x \le 10)$ (2) -21 °C (3) 9 km **22-2** 26 °C

- 22 3분마다 9 °C씩 온도가 올라가므로 1분마다 3 °C씩 올라간다. 따라서 x분 동안 3x °C만큼 온도가 올라가므로 $y=25+3x(0 \le x \le 25)$ y=76일 때, 76=25+3x이므로 x=17∴ 17분 후
- 22-1 (1) 높이가 100 m씩 높아질 때마다 기온은 0.6 °C씩 내려가 므로 1 km씩 높아질 때마다 6 °C씩 내려간다. 따라서 높이가 x km 높아지면 기온은 6x °C씩 내려가므로 $y{=}15{-}6x(0{\le}x{\le}10)$
 - (2) x=6일 때, y=15-6×6=-21(°C)
 - (3) y=-39일 때, -39=15-6x, x=9(km)
- **22-2** 4분마다 주전자에 들어 있는 물의 온도가 6 °C씩 내려갔으므로 1분에 $\frac{3}{2}$ °C씩 내려간 것이다. 이때 x분 후의 물의 온도를 y °C라 하면 x와 y 사이의 관계 식은 $y=98-\frac{3}{2}x$ 이다.

48분 후의 물의 온도는 x=48일 때 y의 값이므로 x=48을 대입하면 y=98 $-\frac{3}{2} \times 48$ =26 따라서 물의 온도는 26 °C이다.

유형 23 길이에 대한 문제

• 125쪽 •

23 (1) $y=30-0.1x(0 \le x \le 300)$ (2) 24 cm (3) $100 \ge 9$

23-1 58 cm **23-2** 20분후

정답및해설

- 23 (1) 두 점 (0, 30), (300, 0)을 지나는 일차함수의 그래프의 식은 y=30-0.1x(0≤x≤300)
 - (2) x = 60일 때, $y = 30 0.1 \times 60 = 24$ $\therefore 24$ cm
 - (3) y=20일 때, 20=30−0.1x ∴ x=100 ∴ 100초 후
- **23-1** x g의 물건을 달 때의 용수철의 길이를 y cm라 하면 무게 1 g마다 용수철이 $\frac{3}{5}$ cm씩 늘어나므로

$$y=40+\frac{3}{5}x(0 \le x \le 40)$$

 $x=30 \le$ ਜੀ, $y=40+\frac{3}{5} \times 30=58$
∴ 58 cm

23-2 양초 A: y=-0.3x+30(0≤x≤100) 양초 B: y'=-0.8x+40(0≤x≤50) -0.3x+30=-0.8x+40 0.5x=10 ∴ x=20 따라서 20분 후에 두 양초의 길이가 같아진다.

유형 24 액체의 양에 대한 문제

• 125쪽 •

24 80분후

24-1 (1) 63 L (2) 26분 후

- 24 x분 후에 물통에 남아 있는 물의 양을 y L라 하면 1분마다 4 L씩의 물이 흘러 나가므로 y=400-4x 이때 0=400-4x에서 x=100
 ∴ y=400-4x(0≤x≤100)
 y=400/5=80일 때 80=400-4x ∴ x=80
 ∴ 80분 후
- **24-1** 주어진 그래프는 (0, 3), (4, 11)을 지나는 직선이므로 (기울기)= $\frac{11-3}{4-0}$ =2, (y절편)=3이므로 x와 y 사이의 관계식은 y=2x+3 (1) y=2 \times 30+3=63 \therefore 63 L (2) 55=2x+3, x=26 \therefore 26분 후

유형 25 거리, 속력, 시간에 대한 문제

• 126쪽 ●

25 6 km

25-1 14초 후 **25-2** 25초

- 25 출발한 지 x분 후에 도착한 지점으로부터 B 지점까지의 거리를 y 때라 하면 철빈이가 x분 동안 간 거리는 300x 때이므로 y=15000-300x이때 0=15000-300x에서 x=50 $\therefore y=15000-300x(0\leq x\leq 50)$
 - x=30일 때, $y=15000-300\times30=6000$ ∴ 6 km
- **25-1** 엘리베이터가 출발한 지 x초 후의 지면으로부터 엘리베이터 바닥까지의 높이를 y m라 하면 y=120-4x y=64이면 64=120-4x, x=14

따라서 높이가 64 m인 순간은 출발한 지 14초 후이다.

25-2 출발한 지 x초 후의 두 사람 사이의 거리를 y m라 하면 x, y 사이의 관계식은 y=50+5x-7x=50-2x y=0을 대입하면 0=50-2x, 2x=50 $\therefore x=25$ 따라서 승기가 태범이를 따라잡는 데 걸리는 시간은 25초이다.

유형 26 도형에 대한 문제

• 126쪽 **•**

26 (1) $y=30x(0< x \le 25)$ (2) 12초 후

26-1 4

26 (1) x초 후의 \overline{BP} 의 길이는 2x cm이므로

$$y = \frac{1}{2} \times \overline{BP} \times \overline{AB} = \frac{1}{2} \times 2x \times 30 = 30x$$

이때 $0 < 2x \le 50$ 이므로 $0 < x \le 25$

 $y=30x(0< x \le 25)$

- (2) *y*=360일 때, 360=30*x*이므로 *x*=12 ∴ 12초 후
- **26-1** x초 후의 \triangle ABP와 \triangle DPC의 넓이를 합을 $y \, \mathrm{cm}^2$ 이라 하면 x초 후에 $\overline{\mathrm{BP}} = 2x (\mathrm{cm})$, $\overline{\mathrm{PC}} = (16 2x) \, \mathrm{cm}$ 이므로 $y = \triangle$ ABP+ \triangle DPC $= \frac{1}{2} \times 2x \times 12 + \frac{1}{2} \times (16 2x) \times 16 = 128 4x$ 이때 0 < 2x < 16이므로 0 < x < 8

따라서 x=6일 때, $y=128-4\times6=104$ 이므로 두 삼각형 의 넓이의 합은 104 cm^2 이다.

유형 27 여러 가지 함수의 활용 문제

• 127쪽 •

27 (1) 초속 338.2 m (2) 30 ℃

27-1 (5)

27-2 2분 30초 후

27-3 y = 3x + 1, 337

27-4 L, E

27-5 (1) 시침: 0.5°. 분침: 6° (2) 40°

(3) y=5.5x+40

(4) 6시 50분

- 27 기온이 x $^{\circ}$ C일 때의 음속을 초속 y m라 하면 기온이 1 $^{\circ}$ C씩 오를 때마다 음속이 $6 \div 10 = 0.6 (m/초)$ 씩 증가하므로 x와 y 사이의 관계식은 y=0.6x+331
 - (1) x = 12 $y = 0.6 \times 12 + 331 = 338.2$ ∴ 초속 338.2 m
 - (2) y=349일 때, 349=0.6x+331, x=30∴ 30 °C
- **27-1** 하루에 16쪽씩 *x*일 동안 16*x*쪽을 읽었으므로 y = 480 - 16xy=0을 y=480-16x에 대입하면 0=480-16x $\therefore x=30$
- **27-2** 주어진 그래프는 x절편이 3. y절편이 720인 직선이므로 $y = -\frac{720}{3}x + 720$, $= y = -240x + 720(0 \le x \le 3)$ y=120일 때, 120=-240x+720에서 $x=\frac{5}{2}$ 따라서 파일을 내려 받기 시작한 지 2부 30초 후이다
- **27-3** x, y의 관계식을 구하면 y=4+3(x-1) $\therefore y=3x+1$ y=100을 y=3x+1에 대입하면 x=33
- **27-4** ㄱ. (할인가)=(정가) $\times \frac{80}{100}$ 이므로 $y = \frac{4}{5}x 300$ y=7700일 때, $7700=\frac{4}{5}x-300$, x=10000ㄷ. x=8000일 때, $y=\frac{4}{5}\times8000-300=6100$
- **27-5** (1) 시침은 1시간에 360°÷12=30°씩 움직이므로 1분에 30°÷60=0.5°씩 움직이고 분침은 360°÷60=6°씩 움 직인다.
 - (2) 6시 40분일 때, 시침과 분침이 이루는 각의 크기는 $6^{\circ} \times 40 - (30^{\circ} \times 6 + 0.5^{\circ} \times 40) = 40^{\circ}$
 - (3) x와 y 사이의 관계식은 y = (6-0.5)x + 40. = 5.5x + 40
 - (4) y=95일 때, 95=5.5x+40 $\therefore x=10$ ∴ 6시 50분

• 128~129쪽 •

- 1단계 4, 2, 2 2단계 2, -2, 6, 2x+6
 - 3단계 -3, 6, -3, 6, 3
- **1-2** -7
- **2-1** 1단계 \overline{OP} , 5-x 2단계 5-x, 3, $\frac{3}{2}$

3단계 3

- $120\,\mathrm{cm}^2$ 2-2
- 3-1 -1

3-2 5개

- 4-1 30 cm
- 4-2 14500원
- **1-2** 두 점 (1, -2), (3, 3)을 지나는 직선의 기울기는

$$\frac{3-(-2)}{3-1} = \frac{5}{2}$$

일차함수의 식을 $y=\frac{5}{2}x+b$ 라 놓고 x=1, y=-2를 대입

$$-2=\frac{5}{2}+b$$
에서 $b=-\frac{9}{2}$

$$\therefore y = \frac{5}{2}x - \frac{9}{2}$$

... 🕗

$$y = \frac{5}{2}x - \frac{9}{2}$$
에 $x = a, y = 3a - 1$ 을 대입하여 풀면

$$a = -7$$

채점 요소	배점
● 직선의 기울기 구하기	1점
② 직선을 나타내는 일차함수의 식 구하기	2점
❸ a의 값 구하기	2점
총점	5점

2-2 점 P가 1초에 2 cm씩 움직이므로 x초 후 선분 BP의 길이

 $= 2x \, \text{cm}$ 이다.

(사각형 APCD의 넓이)

$$=y=\frac{1}{2}\times\{20+(20-2x)\}\times10$$

 $\therefore y = 200 - 10x$ (단, $0 \le x < 10$)

... 🕗

y=200-10x에 x=8을 대입하여 풀면 y=120

따라서 점 P가 점 B를 출발한 지 8초 후의 사각형 APCD

의 넓이는 120 cm²이다.

채점 요소	배점
● x초 후 선분 BP의 길이 구하기	2점
② x, y 사이의 관계식 구하기	2점
8초 후의 사각형 APCD의 넓이 구하기	2점
총점	6점

3-1 1단계

y=ax+5의 그래프가 점 A(1, -2)를 지나면 -2=a+5 $\therefore a=-7$

2단계

y=ax+5의 그래프가 점 B(4, 3)을 지나면 3=4a+5 $\therefore a=-\frac{1}{2}$

3단계

y=ax+5의 그래프가 선분 AB와 만나기 위한 a의 값의 범위는 $-7 \le a \le -\frac{1}{2}$ 따라서 정수 a의 값 중 가장 큰 값은 -1이다.

- **3-2** y=ax-1에 x=1, y=4를 대입하면
 - 4=a-1 $\therefore a=5$ \cdots **①**

y=ax-1에 x=3, y=-2를 대입하면

$$-2=3a-1$$
 $\therefore a=-\frac{1}{3}$ \cdots 2

y=ax-1의 그래프가 선분 AB와 만나기 위한

$$a$$
의 값의 범위는 $-\frac{1}{3} \le a \le 5$

따라서 0이 아닌 정수 a는 1, 2, 3, 4, 5이므로 5개이다.

채점 요소	배점
	2점
② 점 B를 지날 때, a의 값 구하기	2점
③ 0이 아닌 정수 <i>a</i> 의 개수 구하기	3점
총점	7점

4-1 1단계

그래프에서 직선은 두 점 (0, 10), (30, 16)을 지나므로 $(기울기) = \frac{16-10}{30-0} = \frac{1}{5}$

따라서 $1\,\mathrm{g}$ 인 물체를 측정할 때의 늘어난 용수철의 길이는 $\frac{1}{5}\,\mathrm{cm}$ 이다.

2단계

용수철의 원래의 길이가 $10 \ \mathrm{cm}$ 이고 $x \ \mathrm{g}$ 의 물체를 측정할 때 늘어난 길이는 $\frac{1}{5}x \ \mathrm{cm}$ 이므로

$$y = \frac{1}{5}x + 10$$

3단계

x=100을 $y=\frac{1}{5}x+10$ 에 대입하면 y=30따라서 구하려는 용수철의 길이는 30 cm이다.

4-2 그래프에서 직선은 두 점 (0, 2500), (2, 4500)을 지나므로

$$(7]울7])=\frac{4500-2500}{2-0}=1000$$

따라서 1 kg당 추가되는 배송 비용은 1000원이다. ... ① 기본 택배비의 비용은 2500원이고 x kg의 물건의 배송 비용은 1000x원이므로 y=1000x+2500 ... ② 따라서 12 kg인 물건의 배송 비용은

1000×12+2500=14500(원)이다. ··· 3

채점 요소	배점
❶ 1 kg당 추가되는 배송 비용 구하기	3점
② x, y 사이의 관계식 구하기	3점
③ 12 kg의 물건의 배송 비용 구하기	1점
총점	7점

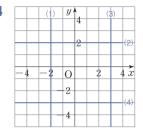
2 일차함수와 일차방정식의 관계

🔔 개념 다지기

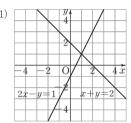
131쪽 133쪽

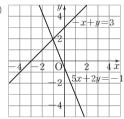
- **01** (1) (2) (2) (3) (4) (5)
- **02** (1) 2, 2, -4 (2) 1, -3, 3 (3) $-\frac{1}{4}$, -5, $-\frac{5}{4}$
- $\mathbf{03} \ (1) \times (2) \times (3) \bigcirc (4) \bigcirc$
- **04** (1) ~ (4) 품이 참조
- **05** (1) x=5 (2) x=-4 (3) y=-4 (4) y=-3
- **06** (1) T (2) F (3) T (4) F **07** x=4, y=1
- **08** (1) x=1, y=1 (2) x=-1, y=2
- **09** (1) (4,5) (2) (-2,1) (3) (-3,2)
- 10 (1) 해가 없다. (2) 해가 무수히 많다.
- **11** (1) $a \ne 4$, b = -6 (2) $b \ne -6$ (3) a = 4, b = -6
- 12(1) ㄷ (2) ㄱ. ㄹ
- **02** 주어진 일차방정식을 y=ax+b의 꼴로 고치면
 - (1) $y=2x-4 \Rightarrow$ 기울기 : 2. x절편 : 2. y절편 : -4
 - (2) $y=x+3 \Rightarrow 7]울7]:1, x절편:-3, y절편:3$
 - (3) $y = -\frac{1}{4}x \frac{5}{4}$
 - \Rightarrow 기울기 : $-\frac{1}{4}$, x절편 : -5, y절편 : $-\frac{5}{4}$
- **03** (1) *x*절편은 -4, *y*절편은 2이다.
 - (2) 기울기는 $\frac{1}{2}$ 이다.
 - (3) x=6, y=5를 대입하면 $6-2\times 5+4=0$

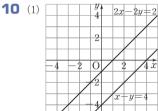
04

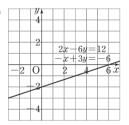


- (1) $x+2=0 \implies x=-2$
- (2) $3y 6 = 0 \implies y = 2$
- (3) $2x 6 = 0 \implies x = 3$
- (4) $4y+12=0 \implies y=-3$
- **06** 방정식 5x+40=0의 그래프는 일차방정식 x=-8의 그래 프와 같다.
 - (4) 제2, 3사분면을 지난다.









- **11** (1) $\frac{3}{b} = \frac{1}{-2} \neq \frac{-a}{8}$ $\therefore a \neq 4, b = -6$
 - $(2) \frac{3}{h} \neq \frac{1}{-2} \qquad \therefore b \neq -6$
 - (3) $\frac{3}{b} = \frac{1}{-2} = \frac{-a}{8}$: a = 4, b = -6

유형 다지기

유형 28 일차방정식과 일차함수의 그래프

28 ②, ④

28-1 2 **28-2** ③

- **01** 3x-4y-2=0을 y에 관하여 풀면 $y=\frac{3}{4}x-\frac{1}{2}$
 - ② x절편은 $\frac{2}{3}$, y절편은 $-\frac{1}{2}$

- ④ (7)울기)>0이므로 x의 값이 증가하면 y의 값도 증가한다.
- ⑤ 두 점 (-3, 2), (1, 5)를 지나는 직선의 방정식은 $y = \frac{3}{4}x + \frac{17}{4}$ 이므로 두 직선은 평행하다.
- **28-1** x+3y-3=0을 y에 관하여 풀면 $y=-\frac{1}{3}x+1$ 4x-3y+7=0을 y에 관하여 풀면 $y=\frac{4}{3}x+\frac{7}{3}$ 따라서 y=ax+b의 그래프의 기울기가 $-\frac{1}{3}$, y절편이 $\frac{7}{3}$ 이므로 $a=-\frac{1}{3}$, $b=\frac{7}{3}$ $\therefore a+b=2$
- **28-2** x-ay-b=0 에서 $y=\frac{1}{a}x-\frac{b}{a}$ 주어진 그래프에서 $\frac{1}{a} < 0$, $-\frac{b}{a} > 0$ $\therefore a < 0, b > 0$

유형 29 일차방정식의 그래프 위의 점

29 ②

29-1 ∟ □ **29-2** -16

- **29** x=a, y=-3 = 2x-y+1=0에 대입하면 2a+3+1=0 : a=-2
- $x=\frac{5}{2}$, y=-8을 대입하면 $6\times\frac{5}{2}+3\times(-8)+9=0$
- **29-2** 10x-2y+6=0에 x=1, y=a를 대입하면 10-2a+6=0, a=810x-2y+6=0에 x=b, y=-7을 대입하면 10b+14+6=0, b=-2 $\therefore ab = -16$

일차방정식의 그래프 위의 점이 주어질 때 유형 30 미지수 구하기

30 기울기:-6, y절편:3

30-1 10 **30-2** -1

- 30 점 (1, -3)을 ax-y+3=0에 대입하면 a+3+3=0이므로 a=-6 -6x-y+3=0에서 y=-6x+3이므로 기울기는 -6이고 y절편은 3이다.
- 30-1 ax-2y=-8에 x=1, y=3을 대입하면 a-6=-8 $\therefore a=-2$ -2x-2y=-8에 x=-3, y=b를 대입하면 6-2b=-8 $\therefore b=7$ -2x-2y=-8에 x=c, y=-1을 대입하면 -2c+2=-8 $\therefore c=5$ $\therefore a+b+c=-2+7+5=10$
- 30-2 x절편이 $\frac{3}{2}$ 이므로 $x=\frac{3}{2}$, y=0을 ax+2y-6=0에 대입하면 $\frac{3}{2}a-6=0$ $\therefore a=4$ 4x+2y-6=0에 x=k+3, y=k를 대입하면 4(k+3)+2k-6=0, 6k=-6 $\therefore k=-1$

유형 **31** 일차방정식의 그래프의 기울기와 y 절편이 주어질 때 미지수 구하기

31 a=4, b=1

31-1 6 **31-2** a = -2, b = 2

- 31 (1-a)x-by+2=0을 y에 관하여 풀면 $y=\frac{1-a}{b}x+\frac{2}{b}$ 기울기는 -3이고 y절편이 2이므로 $\frac{1-a}{b}=-3, \frac{2}{b}=2$ $\therefore a=4, b=1$
- 31-1 두 점 (2,6), (4,10)을 지나는 직선의 기울기는 $\frac{10-6}{4-2} = 2$ $ax-3y+8=0 \text{에서 } y=\frac{a}{3}x+\frac{8}{3}$ 두 그래프가 평행하므로 $\frac{a}{3}=2$ $\therefore a=6$
- **31-2** x+ay-b=0을 y에 관하여 풀면 $y=-\frac{1}{a}x+\frac{b}{a}$ 주어진 그래프에서 (기울기)= $\frac{2}{4}=\frac{1}{2}$, (y절편)=-1 $-\frac{1}{a}=\frac{1}{2}$, $\frac{b}{a}=-1$ $\therefore a=-2$, b=2

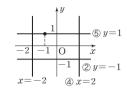
유형 32 좌표축에 평행한 직선의 방정식

• 136쪽 •

32 ②. ④

32-1 2, x=2 **32-2** ③

32 2x+4=0에서 x=-2이므로 오른쪽 그림에서 옳지 않은 것 은 ②, ④이다.



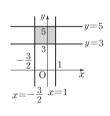
- 32-1 직선의 방정식이 x=k꼴이므로 두 점의 x좌표는 같다. 즉, a=-2a+6 $\therefore a=2$ 따라서 두 점 (2,-3), (2,3)을 지나는 직선의 방정식은 x=2
- **32-2** 일차방정식 ax-by+1=0의 그래프가 x축에 평행하고, 제1, 2사분면을 지나기 위해서는 y=k(k>0)의 꼴이어야 하므로 a=0 이때 -by+1=0, $y=\frac{1}{h}$ 이므로 $\frac{1}{h}>0$ $\therefore b>0$

유형 33 좌표축에 평행한 직선으로 둘러싸인 도형의 넓이 • 136쪽 •

33 5

33-1 1 **33-2** 33

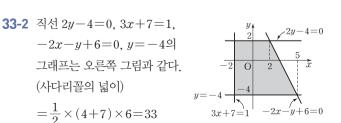
33 직선 $y=3, x=1, x=-\frac{3}{2},$ y=5의 그래프는 오른쪽 그림과 같으므로 구하는 도형의 넓이는 $\left(1+\frac{3}{2}\right)\times(5-3)=5$



 $\begin{array}{c|cccc}
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline$

33-1 직선 3y+8=2, x+4=0, x=3, y-a=0의 그래프는 오른쪽 그림과 같다. (직사각형의 넓이) $=(3+4)\times(a+2)=21$ 이므로

a=1 (:: a>0)



유형 34 연립방정식의 해와 그래프의 해의 교점 • 137쪽 •

34 (2, 1)

34-1 ① **34-2**
$$-\frac{3}{2} < a < -1$$

- 34 연립방정식 $\begin{cases} 3x-y-5=0 \\ -x-2y+4=0 \end{cases}$ 의 해가 x=2, y=1이므로 두 직선의 교점의 좌표, 즉 점 A의 좌표는 (2,1)이다.
- **34-1** 연립방정식 $\begin{cases} 4x-y+3=0 \\ 3x+2y+5=0 \end{cases}$ 의 해가 x=-1, y=-1이므로 a=-1, b=-1 $\therefore 2a+b=2\times (-1)-1=-3$
- 34-2 연립방정식 $\begin{cases} x+2y-1=0 \\ x+3y+a=0 \end{cases}$ 의 해가 $x=2a+3,\ y=-a-1$ 이므로 교점의 좌표는 $(2a+3,\ -a-1)$ 이다. 따라서 $2a+3>0,\ -a-1>0$ 이므로 $a>-\frac{3}{2},\ a<-1$ 에서 $-\frac{3}{2}< a<-1$

35 a=2, b=1

35-1 6 **35-2** -1

- 35 두 그래프의 교점의 좌표가 (-2, 1)이므로 연립방정식의 해는 x=-2, y=1 연립방정식 $\begin{cases} ax+by=-3 \\ bx-ay=-4 \end{cases}$ 에 x=-2, y=1을 대입하면 $\begin{cases} -2a+b=-3 \\ -a-2b=-4 \end{cases}$ $\therefore a=2, b=1$
- 35-1 x=1, y=b를 5x-y-7=0에 대입하면 5-b-7=0 $\therefore b=-2$ x=1, y=-2를 ax-y+1=0에 대입하면 a-(-2)+1=0 $\therefore a=-3$ $\therefore ab=6$
- **35-2** 2x+y=9에 y=-1을 대입하면 x=5 x+ay=6의 그래프가 점 (5,-1)을 지나므로

x+ay=6에 x=5, y=-1을 대입하면 5-a=6 $\therefore a=-1$

유형 36 두 일차방정식의 그래프의 교점을 지나는 직선의 방정식

36 $y = \frac{1}{2}x - 5$

36-1 ② **36-2** 5

- 36 연립방정식 $\begin{cases} 2x-y-8=0\\ x+2y+6=0 \end{cases} \stackrel{\circ}{=} {\rm 풀면}\ x=2,\ y=-4 \\ x-2y=4에서\ y=\frac{1}{2}x-2 \\ {\rm 따라서 \ A}\ (2,\ -4) \stackrel{\circ}{=}\ {\rm 지나고}\ {\rm 기울기가}\ \frac{1}{2}\ {\rm 인}\ {\rm 직선이므로} \\ y=\frac{1}{2}x+b{\rm M}\ x=2,\ y=-4 \stackrel{\circ}{=}\ {\rm H}\ {\rm Loh}\ {\rm H}\ b=-5 \\ \therefore y=\frac{1}{2}x-5 \end{cases}$
- **36-1** 연립방정식 $\begin{cases} 3x-2y=3 \\ 2x+3y=15 \end{cases}$ 를 풀면 $x=3,\ y=3$ 따라서 점 $(3,\ 3)$ 을 지나고 x축에 수직인 직선의 방정식은 x=3
- 36-2 연립방정식 $\begin{cases} 5x+3y=22 \\ x-y=-2 \end{cases}$ 를 풀면 x=2, y=4 두 점 (2,4), (-3,-11)을 지나는 직선의 기울기는 $\frac{4-(-11)}{2-(-3)}=3$ y=3x+b에 점 (2,4)를 대입하여 풀면 b=-2 따라서 y=3x-2에서 a=3, b=-2이므로

유형 37 한 점에서 만나는 세 직선

• 138쪽 •

37 1

37-1 ④ 37-2 −1

3a+2b=9-4=5

37 두 일차방정식 x+y=3, 2x-3y=1을 연립하여 풀면 x=2, y=1 직선 2ax-ay=3이 점 (2,1)을 지나므로 $2a\times 2-a\times 1=3$ $\therefore a=1$

- **37-1** 세 직선이 한 점에서 만나므로 연립방정식 $\begin{cases} 4x+y=13 \\ 5x-2y=-5 \end{cases}$ 를 풀면 x=2, y=5x=2, y=5를 mx+2y=18에 대입하면 2m+10=18
- **37-2** 연립방정식 $\begin{cases} 4x-3y=7 \\ 2x+6y=-4 \end{cases}$ 의 해는 x=1, y=-1직선 3ax+y=2에 x=1, y=-1을 대입하면 3a-1=2 : a=1직선 ax-4by=9에 x=1, y=-1을 대입하면 1+4b=9 : b=2a-b=1-2=-1

유형 38 연립방정식의 해의 개수와 미지수 구하기 • 139쪽 •

38 (5)

38-1 a = -4, b = -5 **38-2** (4)

38-3 - 10

38-4 ③ **38-5** -1.1.2

교점이 존재하지 않으면 두 직선은 평행하다 3x+2y=4에서 $y=-\frac{3}{2}x+2$ ax-4y=7에서 $y=\frac{a}{4}x-\frac{7}{4}$ 이므로 $-\frac{3}{2} = \frac{a}{4}$ $\therefore a = -6$

> 다른풀이 두 일차방정식의 계수와 상수항의 비를 비교하면 $\frac{3}{a} = \frac{2}{-4} \neq \frac{4}{7}$: a = -6

- 38-1 두 직선은 교점이 무수히 많으므로 일치해야 한다. $\frac{a}{2} = \frac{2}{-1} = \frac{10}{b}$: a = -4, b = -5
- 38-2 두 일차방정식의 그래프가 평행해야 한다. $\frac{4}{-2} = \frac{a}{5} \neq \frac{6}{b}$: $a = -10, b \neq -3$
- 38-3 두 일차방정식의 그래프는 일치해야 한다. $\frac{-2}{6} = \frac{a}{3} = \frac{3}{b}$ 이어야 하므로 a = -1, b = -9 $\therefore a+b=-10$
- **38-4** 3x-ay=5 에서 $y=\frac{3}{a}x-\frac{5}{a}$ bx+2y=-1에서 $y=-\frac{b}{2}x-\frac{1}{2}$ 두 직선이 만나지 않으려면 서로 평행해야 하므로

 $\frac{3}{a} = -\frac{b}{2}, -\frac{5}{a} \neq -\frac{1}{2}$: $ab = -6, a \neq 10$ 따라서 a, b의 값으로 알맞은 것은

③ a = -2. b = 3이다.

- 38-5 두 직선이 평행하거나 세 직선이 한 점에서 만나면 삼각형이 만들어지지 않는다.
 - (i) 두 직선 2x-y+4=0, ax-y+3a=0이 평행할 때
 - (ii) 두 직선 x+y-1=0. ax-y+3a=0이 평행할 때 a = -1
 - (iii) 세 직선이 한 점에서 만날 때 연립방정식 $\begin{cases} 2x-y+4=0 \\ x+y-1=0 \end{cases}$ 을 풀면 x=-1, y=2이므로 x=-1, y=2를 ax-y+3a=0에 대입하면 -a-2+3a=0 : a=1
 - ∴ (i), (ii), (iii)에 의하여 a=-1, 1, 2이다.

유형 39 직선으로 둘러싸인 도형의 넓이

• 140쪽 •

39 12

39-1 5 **39-2** 24

- 39 직선 y=0은 x축을 나타낸다. 연립방정식 $\begin{cases} x-y+3=0 \\ 2x+y-6=0 \end{cases}$ 의 해는 x=1, y=4이므로 오른쪽 그림에서 색칠한 부분의 넓이는 $\frac{1}{2} \times 6 \times 4 = 12$
- 39-1 오른쪽 그림에서 두 직선 5x+4y-10=0. $y = -\frac{5}{4}x$ 의 그래프는 평행하고 직선 $y=\frac{5}{2}$ 는 x축과 평행하므로 세 직선과 x축으로 둘러싸인 도형은 평행사변형

따라서 구하려는 도형의 넓이는 $2 \times \frac{5}{2} = 5$

39-2 y = -2x + 4에 y = -2를 대입하면 -2 = -2x + 4 : x = 3직선 y=ax-5가 점 (3, -2)를 지나므로 -2 = 3a - 5 : a = 1

y = -2x + 4에서

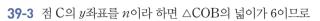
$$x = -1$$
일 때, $y = 6$

y=x-5에서

x=-1일 때, y=-6

따라서 오른쪽 그림에서 색칠한 부분의

넓이는
$$\frac{1}{2} \times (6+6) \times (3+1) = 24$$



$$\frac{1}{2} \times 6 \times n = 6$$
 $\therefore n = 2$

따라서 점 C의 u좌표는 2이다

직선 l이 점 C를 지나므로 x-2=0에서 x=2

 $\therefore C(2, 2)$

직선 m의 그래프는 두 점 (2, 2), (6, 0)을 지나므로

직선 m의 방정식은 $y=-\frac{1}{2}x+3$: A(0,3)

$$\therefore \triangle AOC = \frac{1}{2} \times 3 \times 2 = 3$$

유형 **40** 도형의 넓이를 이동분하는 직선의 방정식 • 140쪽 •

40 (1) 16 (2) (2, 4) (3) 2

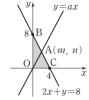
40-1 ③ **40-2** (1)
$$y=x$$
 (2) $y=\frac{2}{3}x+1$

40-3 y = 4x - 4

40 오른쪽 그래프에서

- (1) 2x+y=8의 그래프의
 - x절편은 4 y절편은 8

$$= \frac{1}{2} \times 4 \times 8 = 16$$



(2) 두 직선 2x+y=8과 y=ax의 교점 A의 좌표를 (m, n)이라 하면

$$(\triangle BOA$$
의 넓이)= $\frac{1}{2} \times 8 \times m = 8$...

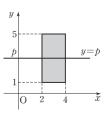
2x+y=8에 x=2를 대입하면 y=4

- (3) y=ax의 그래프가 점 (2, 4)을 지나므로 4=2a $\therefore a=2$
- **40-1** 구하는 직선의 방정식을 y=b라 하면 오른쪽 그림에서

$$=\frac{1}{2}\times(4-2)\times(5-1)$$

$$2(p-1)=4$$
 : $p=3$

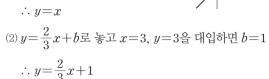
따라서 구하는 직선의 방정식은 y=3



40-2 직사각형을 이등분하는 직선은 오른쪽 그림과 같이

점 M (3, 3)을 지나는 직선이다

(1) y = ax로 놓고 x = 3. y = 3을 대입하면 a=1



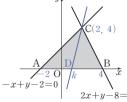
40-3 두 일차방정식

-x+y-2=0 2x+y-8=0

의 해는 x=2, y=4이므로 두

직선의 교점은 (2, 4)이다.

오른쪽 그림에서 점 C를 지나



면서 $\triangle ABC$ 의 넓이를 이등분하는 직선과 x축과의 교점을 D라 하고 그 좌표를 (k, 0)이라 하자.

△ABC=2△BCD이므로

$$\frac{1}{2}\!\times\!(4\!+\!2)\!\times\!4\!=\!2\!\times\!\left\{\frac{1}{2}\!\times\!(4\!-\!k)\!\times\!4\right\}$$

6=2(4-k) : k=1

따라서 두 점 (2, 4), (1, 0)을 지나는 직선 CD의 방정식은 y = 4x - 4

유형 41 두 그래프를 이용한 일차함수의 활용

41 (1) y = 20x (2) y = 30x - 300 (3) 600 m

41-1 (5)

- **41** (1) 동생은 60분에 1200 m를 갔으므로 y=20x
 - (2) 형의 그래프는 두 점 (10, 0), (50, 1200)을 지나므로 y=ax+b에 대입하여 풀면 a=30, b=-300

 $\therefore y = 30x - 300$

- (3) 두 직선의 교점을 구하면 x=30, y=600따라서 집에서 600 m만큼 떨어진 곳에서 만난다.
- **41-1** ① A 물통의 그래프의 식 : $y = -\frac{9}{8}x + 45$
 - ② B 물통의 그래프의 식: $y = -\frac{1}{2}x + 30$
 - ③ x=10일 때 B 물통에 남은 물의 양은 25 L이므로 흘려 보낸 물의 양은 30-25=5(L)이다.
 - ④ $y = -\frac{9}{8}x + 45$ 에 y = 27을 대입하면 x = 16∴ 16분 후

⑤
$$-\frac{9}{8}x + 45 = -\frac{1}{2}x + 30$$
에서 $x = 24$: 24 분 후

선물형 다지기

1-2
$$\frac{3}{2}$$

3-1
$$\frac{1}{2}$$

3-2
$$\frac{1}{2}$$
, 1, 2

1-2 교점의
$$x$$
좌표가 2이므로 $x=2$ 를 $x+y=4$ 에 대입하면

$$2+y=4$$
 $\therefore y=2$

$$x=2, y=2$$
를 $ax-2y=-1$ 에 대입하면

$$2a-4=-1, 2a=3$$
 $\therefore a=\frac{3}{2}$...

채점 요소	배점
lacktriangle 교점의 y 좌표 구하기	2점
② 연립방정식의 해 알기	1점
❸ <i>a</i> 의 값 구하기	2점
총점	5점

2-2 두 일차방정식의 해가 존재하지 않으므로 두 일차방정식의 그래프는 평행하다 ...

$$\frac{2}{a-2} = \frac{-4}{8} \neq \frac{2}{b}$$
 : $a = -2, b \neq -4$

$$(a-2)x+8y=b$$
에 $x=2$, $y=\frac{7}{4}$ 을 대입하면 $b=6$ … ②

$$a+b=-2+6=4$$
 ... (3)

채점 요소	배점
● 연립방정식의 해가 없을 조건 말하기	2점
② a, b의 값 각각 구하기	3점
③ a+b의 값 구하기	1점
총점	7점

3-1 1단계

두 직선 3x+2y-1=0. x+4y-2=0의 교점을

직선 2x-y+k=0이 지나므로 두 직선 3x+2y-1=0. x+4y-2=0의 교점의 좌표를 구하다

2단계

두 방정식 3x+2y-1=0, x+4y-2=0을 연립하여 풀면 $x=0, y=\frac{1}{2}$

따라서 교점의 좌표는 $\left(0, \frac{1}{2}\right)$

$$x=0, y=\frac{1}{2}$$
을 $2x-y+k=0$ 에 대입하면 $-\frac{1}{2}+k=0$
 $\therefore k=\frac{1}{2}$

3-2 직선 y=mx-1이 점 (4,7)을 지나므로 7=4m-1

$$-4m=-8$$
 $\therefore m=2$

세 직선이 삼각형을 이루지 못하는 경우는 다음 세 가지 중 하나이다

(i) 세 직선이 한 점에서 만날 때 직선 y=ax+5가 교점 (4,7)을 지나야 하므로 7=4a+5 $\therefore a=\frac{1}{2}$

- (ii) 직선 y = ax + 5가 y = x + 3과 평행할 때 a = 1
- (iii) 직선 y = ax + 5가 y = mx 1과 평행할 때

$$a=m=2$$

... 🕢

따라서 (i), (ii), (iii)에 의하여 $a=\frac{1}{2}$, 1, 2이다.

채점 요소 	배점
1 <i>m</i> 의 값 구하기	1점
② 삼각형이 생기지 않기 위한 조건을 생각하여 각 조건별로 a의 값 구하기	5점
	1점
총점	7점

4-1 1단계

두 점 (3, 2), (0, 8)을 지나는 직선의 방정식은 y = -2x + 8

2단계

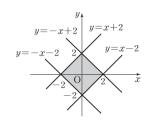
y = -2x + 8의 x절편은 4 *y*=*x*+2의 *x*절편은 −2

두 방정식 y=x+2, y=-2x+8을 연립하여 풀면 x = 2, y = 4따라서 두 직선의 교점의 좌표는 (2, 4)이다.

4단계

구하는 넓이는 $\frac{1}{2} \times (4+2) \times 4 = 12$

따라서 구하는 도형의 넓이는



 $\frac{1}{2} \times 4 \times 4 = 8$

... 🚯

... 🛭

채점 요소	배점
❶ 네 일차함수의 그래프 그리기	2점
② 그래프로 둘러싸인 도형이 어떤 도형인지 알기	3점
그래프로 둘러싸인 도형의 넓이 구하기	2점
총점	7점

생각다지기

144쪽

01 42분 **02** P(1, 0), Q(0, 1)

03 $4 \le x \le 9$

04 52

01 (i) x분 동안 물을 가열했을 때의 물의 온도를 y °C라 하면 y=24+3x

y=90일 때, 90=24+3x에서 x=22

- ∴ 24 °C의 물을 90 °C까지 가열하는 데 걸리는 시간은 22분이다.
- (ii) x분 동안 물을 바닥에 내려놓았을 때의 물의 온도를 y $^{\circ}$ C 라 하면 y=90-2x

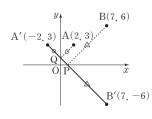
y=50일 때, 50=90-2x에서 x=20

∴ 90 °C의 물을 50 °C까지 식히는 데 걸리는 시간은 20분이다.

따라서 (i), (ii)에서 구하려는 시간은 22+20=42(분)이다.

02점 A(2, 3)을 y축에 대하여대칭시킨 점은 A'(-2, 3),점 B(7, 6)을 x축에 대하여대칭시킨 점은 B'(7, -6)오른쪽 그림에서AQ+QP+PB

 $=\overline{A'Q}+\overline{QP}+\overline{PB'}$ 이고



이 길이가 최소가 되게 하려면 두 점 P, Q가 직선 A'B' 위에 있어야 한다.

직선 A'B'의 방정식은 y = -x+1

 $\therefore P(1, 0), Q(0, 1)$

x와 y 사이의 관계식을 구하면

(i) 점 D에서 점 C로 이동할 때,

즉 0 < x < 4일 때, $y = \frac{1}{2} \times 5 \times x = \frac{5}{2} x$ ··· \bigcirc

(ii) 점 C에서 점 B로 이동할 때,

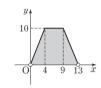
즉 $4 \le x \le 9$ 일 때, $y = \frac{1}{2} \times 5 \times 4 = 10$ … ©

(iii) 점 B에서 점 A로 이동할 때,

즉 9< x< 13일 때.

$$y\!=\!\frac{1}{2}\!\times\!5\!\times\!(13\!-\!x)\!=\!-\frac{5}{2}x\!+\!\frac{65}{2}\,\cdots\,\boxdot$$

따라서 \bigcirc , \bigcirc , \bigcirc 의 그래프가 오른쪽 그림과 같으므로 구하는 x의 값의 범위는 $4 \le x \le 9$ 이다.



04 두 점 A, D가 직선 y=k 위의 점이라 하자. x+2=k에서 x=k-2이므로 A(k-2, k) -x+1=k에서 x=1-k이므로 D(1-k, k)

BO: CO=7: 2이므로

(2-k):(1-k)=7:2(::k-2<0)

 $\therefore k = \frac{3}{5}$

따라서 $A\left(-\frac{7}{5}, \frac{3}{5}\right)$, $D\left(\frac{2}{5}, \frac{3}{5}\right)$ 이므로

(사각형 ABCD의 넓이)= $\left(\frac{2}{5} + \frac{7}{5}\right) \times \frac{3}{5} = \frac{27}{25}$

a=25. b=27이므로 a+b=52

│ 유리수와 순화소수

1 유리수와 순환소수

유형 01 유한소수와 무한소수

01-1 □ 01-2 ③

01-3 (5)

- **01-1** ㄹ. $\frac{4}{11}$ =0.363636····은 무한소수이다.
- **01-2** ① 자연수의 개수는 $7, \frac{6}{2}$ 의 2개이다.
 - ② 0.12는 유리수이다.
 - ③ 정수가 아닌 유리수는 0.12, -0.3333, $\frac{1}{4}$ 의 3개이다.
 - $4 3\pi$ 는 무한소수. -0.3333은 유한소수이다.
 - ⑤ 분수 $\frac{1}{4}$ 을 소수로 나타내면 유한소수이다.
- **01-3** ① $\frac{11}{50}$ = 0.22 ② $\frac{9}{45}$ = 0.2
- - $3\frac{18}{75} = 0.24$ $4\frac{21}{120} = 0.175$
 - $5\frac{25}{140} = 0.17857142\cdots$

유형 02 분수를 유한소수로 나타내기

2쪽

02-1 102

02-2 2.5

02-3 ②

02-4 4

- **02-1** $\frac{3}{400} = \frac{3}{2^4 \times 5^2} = \frac{3 \times 5^2}{2^4 \times 5^2 \times 5^2} = \frac{75}{10000} = 0.0075$ 따라서 a=2, $b=5^2=25$, c=0.0075이므로 a+b+10000c=2+25+75=102
- **02-2** $\frac{15}{6} = \frac{3 \times 5}{2 \times 3} = \frac{5 \times 5}{2 \times 5} = \frac{25}{10} = 2.5$
- **02-3** $\frac{11}{200} = \frac{11}{2^3 \times 5^2} = \frac{11 \times 5}{2^3 \times 5^2 \times 5} = \frac{55}{1000} = 0.055$
- **02-4** $\frac{15}{250} = \frac{3 \times 5}{2 \times 5^3} = \frac{3}{2 \times 5^2} = \frac{3 \times 2}{2 \times 5^2 \times 2} = \frac{6}{10^2}$ 이므로 a+n의 최솟값은 6+2=8

유형 03 유한소수로 나타낼 수 있는 분수

03-1 ③. ⑤ **03-2** 1

03-3 ③

- **03-1** ① $\frac{9}{20} = \frac{3}{10} = \frac{3}{2 \times 5}$ (유한소수)
 - ② $\frac{13}{20} = \frac{13}{2^2 \times 5}$ (유한소수)
 - ③ $\frac{2}{75} = \frac{2}{3 \times 5^2}$ (무한소수)
 - ④ $\frac{42}{2 \times 5^2 \times 7} = \frac{2}{5^2} ($ 유한소수)
 - (5) $\frac{40}{2^2 \times 3 \times 5^2} = \frac{2}{3 \times 5}$ (무한소수)
- **03-2** 무한소수 : $\frac{2}{7}$, $\frac{4}{11}$, $\frac{6}{18} = \frac{1}{3}$, $\frac{15}{21} = \frac{5}{7}$ $\therefore a = 4$

유한소수: $\frac{4}{25} = \frac{4}{5^2}$, $\frac{7}{28} = \frac{1}{4} = \frac{1}{2^2}$,

$$\frac{4}{50} = \frac{2}{25} = \frac{2}{5^2}$$
 : $b = 3$

a-b=4-3=1

03-3 유한소수는 기약분수로 나타냈을 때, 분모의 소인수가 2 또 는 5뿐이어야 한다.

$$\frac{3}{24} = \frac{1}{2^3}, \frac{3}{25} = \frac{3}{5^2}, \frac{3}{30} = \frac{1}{2 \times 5}, \frac{3}{32} = \frac{3}{2^5}$$

 $\frac{3}{40} = \frac{3}{2^3 \times 5}$ 이므로 유한소수로 나타낼 수 있는 분수는 5개이다.

따라서 유한소수로 나타낼 수 없는 분수의 개수는

20-5=15(71)

유형 04 유한소수가 되도록 하는 자연수 구하기(1) • 3쪽 •

04-1 ②

04-2 ④

04-3 80

- **04-1** $\frac{18}{2^2 \times 5 \times a} = \frac{2}{5 \times a}$ 가 유한소수가 되도록 하는 a의 값은 5, 8=2³, 10=2×5의 3개이다.
- **04-2** (개) $64=2^6$ 이므로 N은 2를 소인수로 갖지 않는다.
 - (내) $\frac{64}{2 \times N} = \frac{2^5}{N}$ 은 유한소수로 나타낼 수 있으므로 N은 소 인수가 2나 5뿐인 수이다.

(7), (4), (4)에 의해서 N은 5의 거듭제곱으로 나타낼 수 있는 두 자리 자연수이다.

∴ 4 25

04-3 $\frac{7}{2^2 \times 5^3 \times a}$ 을 소수로 나타내면 유한소수가 되므로 a는 2 또는 5를 소인수로 가지는 수이거나 7의 배수이면서 2 또는 5를 소인수로 가지는 수 (단, 7의 지수는 1)이다. 따라서 a의 값이 될 수 있는 것 중 가장 큰 두 자리의 자연수는 $2^4 \times 5 = 80$

유형 05 유한소수가 되도록 하는 자연수 구하기 (2) • 4쪽 •

05-1 21, 42, 63, 84 **05-2** 77 **05-3** 9개

- **05-1** $\frac{11}{420} \times a = \frac{11}{2^2 \times 3 \times 5 \times 7} \times a$ 가 유한소수가 되려면 a는 3×7 , 즉 21의 배수이어야 한다. 따라서 두 자리의 자연수는 21, 42, 63, 84이다.
- **05-2** $\frac{18}{132} \times a = \frac{3}{2 \times 11} \times a$ 는 유한소수이므로 a는 11의 배수 $\frac{24}{525} \times a = \frac{8}{5^2 \times 7} \times a$ 는 유한소수이므로 a는 7의 배수 \therefore (가장 작은 자연수 a) = (11과 7의 최소공배수)=77
- **05-3** $\frac{9\times A}{112} = \frac{9\times A}{2^4\times 7}$ 는 유한소수이므로 A는 7의 배수 $\frac{11\times A}{260} = \frac{11\times A}{2^2\times 5\times 13}$ 는 유한소수이므로 A는 13의 배수 이어야 한다. 즉, A는 $7\times 13=91$ 의 배수이어야 한다. 따라서 91의 배수 중 세 자리 자연수는

 $91 \times 2 = 182, \ 91 \times 3 = 273, \ \cdots, \ 91 \times 10 = 910$ 이므로 구하는 세 자리 자연수 A의 개수는 9개이다.

유형 **06** 유한소수가 되도록 하는 수를 찾고 기약분수로 나타내기 • 4쪽 •

06-1 7 **06-2** 37 **06-3** 53

06-1 $\frac{a}{450} = \frac{a}{2 \times 3^2 \times 5^2}$ 가 유한소수이려면 기약분수로 나타냈을 때, 분모의 소인수가 2나 5 뿐이어야 하므로 a는 9의 배수이 어야 한다.

이때
$$\frac{18}{450} = \frac{1}{25}$$
이므로 $a = 18$, $b = 25$
 $\therefore b - a = 25 - 18 = 7$

- **06-2** (가) $\frac{m}{140} = \frac{m}{2^2 \times 5 \times 7}$ 이 유한소수가 되기 위해서는 m은 7의 배스이어야 한다
 - (나) $\frac{m}{2^2 \times 5 \times 7} = \frac{11}{n}$ 에서 140과 11은 서로소이므로 m은 11의 배수이어야 한다

즉, m은 7과 11의 공배수인 두 자리의 자연수이므로

m = 77

$$\frac{77}{140} = \frac{11}{20}$$
이므로 $n = 20$

 $m-2n=77-2\times20=37$

06-3 $\frac{a}{210} = \frac{a}{2 \times 3 \times 5 \times 7}$ 가 유한소수이려면 기약분수로 나타냈을 때, 분모의 소인수가 2나 5 뿐이어야 하므로 a는 $3 \times 7 = 21$ 의 배수이어야 한다. $60 < a \le 84$ 이므로 a = 63 또는 a = 84 $\frac{63}{210} = \frac{3}{10}$, $\frac{84}{210} = \frac{2}{5}$ 에서 조건을 만족시키는 a의 값은 63, b의 값은 10 $\therefore a - b = 63 - 10 = 53$

유형 07 순환소수의 표현

5쪽

07-1 ①. ④ **07-2** ③

07-3 단백질

07-1 ① 2.1212 \cdots =2. $\dot{1}\dot{2}$ ④ 6.172172 \cdots =6. $\dot{1}\dot{7}\dot{2}$

07-3 탄수화물 : $\frac{28}{42}$ =0. $\dot{6}$, 단백질 : $\frac{6}{42}$ =0. $\dot{1}4285\dot{7}$ 지방 : $\frac{7}{42}$ =0. $\dot{1}\dot{6}$

따라서 순환마디의 개수가 가장 많은 영양성분은 단백질이다.

유형 **08** 순환소수의 소수점 아래 *n*번째 자리의 숫자 구하기 • 5쪽 •

08-1 8 **08-2** 276 **08-3** 90

08-1 3.2i673에서 순환마디는 소수점 아래 2번째 자리부터 시작하고 순환마디의 개수는 4개이다.
 60=1+4×14+3이므로

(소수점 아래 60번째 자리의 숫자)

- =(순환마디의 3번째 숫자)
- $\therefore a=7$

150=1+4×37+1이므로

(소수점 아래 150번째 자리의 숫자)

- =(순화마디의 1번째 숫자)
- b=1
- a+b=7+1=8
- **08-2** $\frac{3}{700}$ =0.00428571이므로

 $a_3+a_4+a_5+a_6+a_7+a_8=4+2+8+5+7+1=27$

64=2+6×10+2이므로

 $a_1 + a_2 + a_3 + \cdots + a_{63} + a_{64}$

- $=a_1+a_2+27\times 10+a_{63}+a_{64}$
- =0+0+270+4+2
- =276
- **08-3** x_1 이 음이 아닌 한 자리 정수이므로 $\frac{x_1}{10}$ 의 x_1 은 소수 첫째

자리를 나타내는 수이다. 같은 방법으로 $\frac{x_2}{10^2}$, $\frac{x_3}{10^3}$, …에서

 x_2, x_3, \cdots 은 각각 소수 둘째 자리의 수, 소수 셋째 자리의 수, \cdots 를 나타냈다.

 $\frac{40}{111} = \frac{360}{999} = 0.\dot{3}6\dot{0} = 0.360360360\cdots$

따라서 $x_1+x_2+x_3=3+6+0=9$ 이고 $30=3\times10$ 이므로 구하는 값은 $9\times10=90$

유형 09 순환소수가 되도록 하는 미지수의 값 구하기 • 6쪽 •

09-1 45 **09-2** ③, ④ **09-3** 25개

- **09-1** $\frac{18}{80 \times a} = \frac{9}{2^3 \times 5 \times a}$ 가 순환소수가 되려면 기약분수로 나타냈을 때, 분모에 2와 5 이외의 소인수가 있어야 한다. $a=7,\ 11,\ 13,\ 14$ 따라서 구하는 a의 값들의 합은 7+11+13+14=45
- **09-2** $\frac{n}{220} = \frac{n}{2^2 \times 5 \times 11}$ 이 순환소수가 되려면 기약분수로 나타 냈을 때, 분모에 2나 5 이외의 소인수가 있어야 하므로 n은 11의 배수가 아니어야 한다. 따라서 n의 값이 될 수 있는 것은 ③ 27. ④ 30이다.
- **09-3** $\frac{7}{2^2 \times 5 \times x}$ 을 소수로 나타내었을 때, 순환소수가 되려면

기약분수의 분모에 2나 5 이외의 소인수가 있어야 한다. 유한소수가 되게 하는 x의 개수를 먼저 구하면 다음과 같다

(i) $x=2^m$ 또는 $x=2^m \times 5^n$ 또는 $x=5^n(m, n$ 은 자연수)의 꼴인 경우

x는 2, 4, 5, 8, 10, 16, 20, 25, 32, 40의 10개

- (ii) $x=7\times 2^m$ 또는 $x=7\times 2^m\times 5^n$ 또는 $x=7\times 5^n(m,n)$ 은 자연수)의 꼴인 경우 x는 14, 28, 35의 3개
- (iii) x=1, x=7일 때에도 유한소수가 된다.

따라서 순환소수가 되게 하는 x의 개수는

40 - (10 + 3 + 2) = 25(71)

유형 10 순환소수를 분수로 나타내기 (1)

6쪽

10-1 100 **10-2** 1000, 1000, 10, 10, 313, 313

10-3 ③

10-1 $x=0.23\dot{4}=0.23444\cdots$

 $1000x = 234.444\cdots$

- $-) 100x = 23.444 \cdots$ 900x = 211
- 10-3 ① 순환마디는 21
 - (2) 3.021
 - ④ 3.12의 순화마디는 12이다.
 - (5) $x = 3 + 0.02\dot{1}$

유형 11 순환소수를 분수로 나타내기 (2)

7쪽

11-1 ③

11-2 13

11-3 ①

11-4 ③

11-1 ③ 7.0
$$\dot{4} = \frac{704 - 70}{90}$$

11-2 $0.5\dot{1}\dot{2} = \frac{512-5}{990} = \frac{169}{330}$ $\therefore a = 169$

$$\therefore \frac{1}{13}a = \frac{1}{13} \times 169 = 13$$

11-3 $\frac{3}{2}(0.1+0.01+0.001+\cdots)$

$$=\frac{3}{2}\times0.111\dots=\frac{3}{2}\times0.\dot{1}=\frac{3}{2}\times\frac{1}{9}=\frac{1}{6}$$

- 1+6=7

0.34=
$$\frac{34-3}{90}$$
= $\frac{31}{90}$ → 바르게 본 분자 : 31

따라서 $A = \frac{31}{9} = 3.4$

유형 12 순환소수의 대소 관계

• 8쪽 •

- **12-1** (4) **12-2 5 12-3 3**, **4 12-4 3 12-5** 12
- **12-1** ① $0.\dot{9} = \frac{9}{9} = 1$ ② $0.\dot{5} > 0.555$

 - $\bigcirc 0.49 < 0.49$
- (5) 0.36 > 0.363
- **12-2** $A = 0.\dot{6}2\dot{3} = 0.623623623\cdots$ $B = 0.623 = 0.62333 \cdots$ $C = 0.6\dot{2}\dot{3} = 0.6232323\cdots$
 - $\therefore C < B < A$
- **12-3** ① $\frac{6}{11}$ = 0.54
 - $@0.5\dot{4} < 0.\dot{5}\dot{4}$
 - $3\frac{7}{9} = 0.\dot{7}$ $40.7\dot{9} = 0.8$
 - © 0.83 > 0.83
- **12-4** $\frac{7}{6}$ =1.1 $\dot{6}$, $\frac{3}{2}$ =1.5이므로 x의 값이 될 수 있는 것은 $1.\dot{2}$. $1.\dot{3}$ 2. $1.\dot{4}$ 이다. .: 3개
- **12-5** $\frac{2}{5} < 0.\dot{x} \le 0.\dot{8}$ 에서 $\frac{2}{5} < \frac{x}{9} \le \frac{8}{9}$ 분모를 45로 통분하면 $\frac{18}{45} < \frac{5x}{45} \le \frac{40}{45}$ 따라서 $18 < 5x \le 40$ 이므로 $3.6 < x \le 8$
 - $\therefore m=4, M=8$
 - M+m=8+4=12

유형 13 순환소수를 포함한 식의 계산

13-1 ① **13-2** ② **13-3** 45

13-4 (1) $\frac{9a+b}{90}$, $\frac{a+9b}{90}$ (2) 2

13-1 $9.\dot{2}\dot{7} = \frac{927-9}{99} = 918 \times \frac{1}{99} = 918 \times 0.\dot{0}\dot{1}$ $3.0\dot{2} = \frac{302 - 30}{90} = 272 \times \frac{1}{90}$ $\therefore b = \frac{1}{90}$: $ab = 918 \times \frac{1}{90} = 10.2$

- **13-2** 0.47x 0.3x + 0.06 = 0.5에서 $\frac{43}{90}x - \frac{3}{9}x + \frac{6}{90} = \frac{1}{2}$ 양변에 90을 곱하면 43x - 30x + 6 = 4513x = 39 : x = 3 $\therefore a = 3$ 이므로 a의 역수는 $\frac{1}{3} = 0.3$
- **13-3** 어떤 자연수를 x라 하면 $x \times 0.6 - 3 = x \times 0.6$ $\frac{2}{3}x - 3 = \frac{3}{5}x$ 양변에 15를 곱하면 10x-45=9x $\therefore x = 45$
- **13-4** (1) $0.a\dot{b} = \frac{10a+b-a}{90} = \frac{9a+b}{90}$ $0.b\dot{a} = \frac{10b + a - b}{90} = \frac{a + 9b}{90}$ (2) $\frac{9a+b}{90} + \frac{a+9b}{90} = \frac{10a+10b}{90} = \frac{a+b}{9}$ $0.\dot{6} = \frac{6}{9}$ 이므로 $\frac{a+b}{9} = \frac{6}{9}$: a+b=6a, b는 자연수이고 a > b > 1이므로 a = 4, b = 2

유형 **14** (순환소수)×x=(자연수 또는 유한소수)가 되도록 하는 x의 값 구하기

14-1 12 **14-2** 11 **14-3** ⑤

 $\therefore a-b=2$

- **14-1** $2.1\dot{6} = \frac{216-21}{90} = \frac{13}{6}$ 이므로 a는 6의 배수이어야 한다. 따라서 a의 값이 될 수 있는 가장 작은 두 자리 자연수는 12이다.
- **14-2** $2.\dot{4}\dot{5} = \frac{245-2}{99} = \frac{243}{99} = \frac{27}{11}$ 따라서 곱할 수 있는 자연수는 11의 배수이므로 가장 작은 자연수는 11이다.
- **14-3** 1.8 $\dot{3} = \frac{183 18}{90} = \frac{11}{6} = \frac{11}{2 \times 3}$ 이므로 $\frac{11}{2\times3}\times A=B^2$ 이 되려면 $A=2\times3\times11\times k^2$ (k는 자연수)의 꼴이 되어야 한다. 따라서 가장 작은 세 자리 자연수는 k=2일 때 264

유형 15 유리수와 소수의 관계

• 9쪽 •

- **15-2** ② ④ **15-3** ② **15-1** 2
- **15-1** 유리수는 ∟, ⊏, ㄹ, ㅁ, ㅂ의 5개 ∴ *a*=5 무한소수로 나타낼 수 있는 수는 그, ㄷ, ㅁ의 3개 $\therefore b=3$
 - $\therefore a-b=2$
- 15-2 ① 순화하는 무한소수는 유리수이다.
 - ③ 기약분수의 분모가 2나 5뿐인 소인수를 가질 때, 유한소 수가 된다.
 - ⑤ $0.\dot{3},~0.\dot{6}$ 은 순환소수이지만 $0.\dot{3}+0.\dot{6}=\frac{3}{9}+\frac{6}{9}=1$ 은
- **15-3** ㄴ. 모든 순환소수는 $\frac{b}{a}(a \neq 0, a, b$ 는 정수)의 꼴로 나타낼 수 있다.
 - 리 0은 유리수이다.

Ⅱ. 식의 계산

1 단항식의 계산

유형 01 지수법칙 - 지수의 합

10쪽 •

- **01-1** 2
- **01-2** $x^5y^4z^4$ **01-3 (4)**
- 01-4 ②

- **01-1** $2^{3 \times \square + 3} = 2^9$
 - $3 \times \square + 3 = 9$
 - $\therefore \square = 2$
- **01-2** $A = x^2 \times xy^3 = x^3y^3$

 $B = x^2yz^4$

- $\therefore A \times B = x^3y^3 \times x^2yz^4 = x^5y^4z^4$
- **01-3** $xy=3^{3a}\times3^{6b}=3^{3(a+2b)}=3^{3\times5}=3^{15}$
- **01-4** $5 \times 6 \times 7 \times 8 \times 9 \times 10$
 - $=5\times(2\times3)\times7\times2^3\times3^2\times(2\times5)$
 - $=2^5\times3^3\times5^2\times7$
 - ∴ a=5, b=3, c=2, d=1이므로
 - a+b-c-d=5+3-2-1=5

유형 02 지수법칙 - 지수의 곱

• 10쪽 •

- **02-1** (5)
- **02-2** ③
- **02-3** 6
- 02-4 (4)
- **02-1** $\neg x^2 \times (y^3)^2 \times (y^4)^3 = x^2 \times y^6 \times y^{12} = x^2 y^{18}$ $\therefore a = 18$ $(-3)^3 \times \{(-3)^2\}^3 = (-3)^3 \times (-3)^6 = (-3)^9$ $=-3^{9}$
 - $\therefore h=3$
 - $\therefore a-b=15$
- **02-2** $(a^4)^2 \times b \times a \times (b^2)^2 = a^9 b^5$ ∴ □=9
- **02-3** $(3^2)^{x+4} \times (3^3)^{x+2} = (3^4)^{x+5}$ 에서 2(x+4)+3(x+2)=4(x+5)2x+8+3x+6=4x+20 $\therefore x=6$
- 02-4 48. 64. 32의 최대공약수는 16이므로

 $A = 5^{48} = (5^3)^{16} = 125^{16}$

 $B = 3^{64} = (3^4)^{16} = 81^{16}$

 $C=11^{32}=(11^2)^{16}=121^{16}$

A. B. C의 지수가 16으로 같으므로 믿이 클수록 크다.

B < C < A

유형 03 지수법칙 - 지수의 차

11쪽 •

- **03-1** ②
- **03-2** ③ **03-3** (1) 5^{3n-5} (2) 5^4 (3) 3
- $\Box b^4 \div (b^5 \div b^3) = b^2$
- **03-2** $x^{3a-10+1} = \frac{1}{x^{9-3a}} = \frac{1}{x^3}$ 이므로
 - 9-3a=3 $\therefore a=2$
 - $\therefore a^2 = 4$
- **03-3** (1) $\frac{5^{4n+1}}{5^{n+6}} = 5^{4n+1} \div 5^{n+6} = 5^{4n+1-(n+6)} = 5^{3n-5}$
 - (2) $625 = 5^4$
 - (3) 3n-5=4에서 n=3

유형 04 지수법칙 - 지수의 분배

11쪽 •

- 04-1 (5)
- **04-2** 22
- 04-3 니, ㄷ

- **04-1** $(2a^2b^3)^x = 2^xa^{2x}b^{3x} = 32a^{10}b^y$ |A| x=5, y=15 $\frac{(pq^z)^3}{(p^3q)^2} = \frac{p^3q^{3z}}{p^6q^2} = \frac{q^{3z-2}}{p^3} = \frac{q^4}{p^w}$ |A| z=2, w=3 $\therefore x + y + z + w = 5 + 15 + 2 + 3 = 25$
- **04-2** $(0.\dot{1})^a = \left(\frac{1}{9}\right)^a = \left\{\left(\frac{1}{3}\right)^2\right\}^a = \frac{1}{3^{2a}} = \frac{1}{3^8}$ 2a = 8 $\therefore a = 4$ $(2.\dot{7})^7 = \left(\frac{25}{9}\right)^7 = \left\{\left(\frac{5}{3}\right)^2\right\}^7 = \left(\frac{5}{3}\right)^{14}$ $\therefore b = 14$ 따라서 $2a + b = 2 \times 4 + 14 = 22$
- **04-3** $(x^a y^b z^c)^d = x^{ad} y^{bd} z^{cd} = x^{16} y^{12} z^{20}$ ¬. $a \times d = 16$ 이므로 16은 a와 d의 배수이다. ∟. a와 d는 16의 약수, b와 d는 12의 약수, c와 d는 20의 약수 ∴ d는 16, 12, 20의 공약수이다.
 - c. d = (16, 12, 20의 최대공약수)=4일 때, a=4, b=3, c=5이므로 a+b+c=12

유형 05 지수법칙 - 종합

• 12쪽 •

05-1 ∟ **05-2** ② **05-3** 0

- **05-1** 기. 7 나. 10 다. 3 ㄹ. 1
- **05-2** ① $2^2 \times 2^4 \div 2^8 = \frac{1}{2^2}$ ③ $(-3ab^2)^3 = -27a^3b^6$ ④ $\left(\frac{-2a}{b^4}\right)^4 = \frac{16a^4}{b^{16}}$ ⑤ $-\left(\frac{y}{2r^2}\right)^2 = -\frac{y^2}{4r^4}$
- **05-3** \square ÷ $3x^6y^5 = \frac{27x^2y^5}{\square}$ 에서 $\frac{\square}{3x^6y^5} = \frac{27x^2y^5}{\square}$ 이므로 $\square^2 = 81x^8y^{10} = (9x^4y^5)^2$ $ax^by^c = 9x^4y^5$ 에서 a = 9, b = 4, c = 5이므로 a b c = 0

유형 06 지수법칙의 활용

• 12쪽 •

06-1 (1) (5) (2) (1) (3) (3) **06-2** (5) **06-3** (3)

06-4 4

- **06-1** (1) $4(MB) = 2^2 \times 2^{10}(KB) = 2^2 \times 2^{10} \times 2^{10}(Byte)$ = $2^2 \times 2^3 \times 2^{10} \times 2^{10}(bit) = 2^{25}(bit)$
 - (2) 16(KB)=2⁴×2¹⁰(Byte)=2¹⁴(Byte) 한글은 1자가 2 Byte를 차지하므로 16 KB에는 2¹⁴÷2=2¹³(자)까지 저장할 수 있다.
 - $(3) 1(GB) = 2^{10}(MB)$ 이므로 $2^{10} \div 2^3 = 2^7 = 128(7)$
- 06-2A 세균 3³마리는 30분 후에 3³×3=3⁴(마리)(30×2)분 후에 3⁴×3=3⁵(마리),(30×3)분 후에 3⁵×3=3⁵(마리), ···(30×10)분 후에 3¹³(마리)
- **06-3** 지수법칙을 이용하면 $2^5 \times 2^5 \times 2^5 = 2^{15}$
- **06-4** (거리)=(속력)×(시간) = $3 \times 10^5 \times 3 \times 10^7 \times 10 = 3^2 \times 10^{13} (km)$

유형 **07** 지수법칙의 응용 (1) - 거듭제곱의 덧셈식 • 13쪽 •

07-1 ③ **07-2** ⑤ **07-3** ③ **07-4** ②

07-1 $9^3 + 9^3 + 9^3 = 9^3 \times 3 = (3^2)^3 \times 3 = 3^{6+1} = 3^7$

07-2 (가 (좌번)= $4 \times A^8$, (우번)= $4^{13} = (2^2)^{13} = 2^{26}$ $2^2 \times A^8 = 2^{26}$, $A^8 = 2^{24} = (2^3)^8$ $\therefore A = 2^3 = 8$ (나) (좌번)= $\{(5^2)^5\}^B = 5^{10B}$ $5^{10B} = 5^{50}$ 에서 B = 5(다) $3^4 \times 3^4 \times 3^4 \times 3^4 = (3^4)^4 = 3^{16} = 3^C$ $\therefore C = 16$

 $\therefore A - B + C = 8 - 5 + 16 = 19$

07-3 $\frac{2^5 + 2^5}{8^3 + 8^3 + 8^3 + 8^3} = \frac{2 \times 2^5}{4 \times 8^3} = \frac{2 \times 2^5}{2^2 \times (2^3)^3}$ $= \frac{2^6}{2^{11}} = \frac{1}{2^5} = \frac{1}{32}$

07-4 $\frac{27^4 + 9^4}{27^6 + 9^7} = \frac{(3^3)^4 + (3^2)^4}{(3^3)^6 + (3^2)^7} = \frac{3^{12} + 3^8}{3^{18} + 3^{14}} = \frac{3^{12} + 3^8}{3^6 (3^{12} + 3^8)}$ $= \frac{1}{3^6} = \left(\frac{1}{3}\right)^6$

따라서 a=3. b=6이므로 ab=18

유형 **08** 지수법칙의 응용 (2) - 밑은 같고 지수가 미지수일 때 • 14쪽 •

08-1 4 08-2 3 08-3 2

08-1 (좌변)=
$$3^{2x+1}+3^{2x+3}+3^{2x}$$

= $3^{2x}\times3+3^{2x}\times3^3+3^{2x}$
= $3^{2x}\times(3+27+1)=3^{2x}\times31$

(우변)=
$$93 \times 27 = (31 \times 3) \times 3^3 = 31 \times 3^4$$

 $3^{2x} \times 31 = 31 \times 3^4$ 에서 $2x = 4$ $\therefore x = 2$

08-2
$$4^{n+2} \times 8^{n-2} = 16^n + 16^n$$

 $2^{2(n+2)} \times 2^{3(n-2)} = 2 \times 2^{4n}$
 $2^{2n+4+3n-6} = 2^{4n+1}$
 $5n-2=4n+1 \quad \therefore n=3$
 $\therefore 2n-1=2\times 3-1=5$

08-3 (좌번)=
$$4^a \times (2^a + 2^a + 2^a + 2^a)$$

= $2^{2a} \times (4 \times 2^a) = 2^{2a} \times 2^2 \times 2^a = 2^{3a+2}$
(우번)= $256 = 2^8$
 $2^{3a+2} = 2^8$ 에서 $3a+2=8$ $\therefore a=2$

유형 09 지수법칙의 응용 (3) - 문자를 사용하여 나타내기 • 14쪽 •

09-1 ④ **09-2** ⑤ **09-3**
$$6a^2$$
 09-4 ①

09-1
$$2^{10} = \frac{1}{A}$$
이므로 $4^{10} = (2^2)^{10} = 2^{20} = \left(\frac{1}{A}\right)^2 = \frac{1}{A^2}$

09-2
$$5^{x-1} = 5^x \div 5 = B$$
 $\Rightarrow 5^x = 5B$
 $125^x = (5^3)^x = (5^x)^3 = (5B)^3 = 125B^3$

09-3
$$2^{2x+1}(9^x+9^x+9^x) = 2^{2x} \times 2 \times (3 \times 3^{2x})$$

= $2 \times 3 \times 2^{2x} \times 3^{2x}$
= $6 \times (2 \times 3)^{2x}$
= $6 \times 6^{2x} = 6 \times (6^x)^2 = 6a^2$

09-4
$$A=3^x \times 3$$
이므로 $3^x=\frac{A}{3}$ $B=5^x\div 5$ 이므로 $5^x=5B$ $15^x=(3\times 5)^x=3^x\times 5^x=\frac{A}{3}\times 5B=\frac{5}{3}AB$

10-1 4 10-2 28 **10-3 3 10-4** 2 **10-5 1 10-1**
$$2^{17} \times 5^{21} = (2^{17} \times 5^{17}) \times 5^4$$

10-1
$$2 \times 5 = (2 \times 5) \times 5$$

= $5^4 \times 10^{17}$
= 625×10^{17}
따라서 20자리의 자연수이므로 $n=20$

10-2
$$\frac{2^{26} \times 15^{50}}{45^{25}} = \frac{2^{26} \times (3 \times 5)^{50}}{(3^2 \times 5)^{25}} = \frac{2^{26} \times 3^{50} \times 5^{50}}{3^{50} \times 5^{25}}$$
$$= 2 \times (2^{25} \times 5^{25}) = 2 \times 10^{25}$$

따라서 26자리 수이고 가장 큰 자릿수의 숫자는 2이므로 n+a=26+2=28

10-3
$$2^{50} \div 4^{12} = 2^{50} \div 2^{24} = 2^{26}$$

2의 거듭제곱의 일의 자리의 숫자는 2, 4, 8, 6이 반복된다.
 $26 = 4 \times 6 + 2$ 이므로
 $(2^{26}$ 의 일의 자리의 숫자)= $(2^{2}$ 의 일의 자리의 숫자)=4

10-4 7의 거듭제곱의 일의 자리의 숫자는 7, 9, 3, 1이 반복된다.
123=4×30+3이므로
(7¹²³의 일의 자리의 숫자)=(7³의 일의 자리의 숫자)=3
13의 거듭제곱의 일의 자리의 숫자는 3, 9, 7, 1이 반복된다.
52=4×13이므로
(13⁵²의 일의 자리의 숫자)=(13⁴의 일의 자리의 숫자)=1
∴ 7¹²³-13⁵²의 일의 자리의 숫자는 2이다.

10-5
$$4^{12} \times 5^{20} = (2^2)^{12} \times 5^{20} = 2^{24} \times 5^{20} = 2^4 \times 2^{20} \times 5^{20}$$

 $= 2^4 \times 10^{20} = 16 \times 10^{20}$
 따라서 22자리의 자연수이므로 $m = 22$
 3의 거듭제곱의 일의 자리의 숫자는 3, 9, 7, 1이 반복된다.
 $34 = 4 \times 8 + 2$ 이므로
 $(3^{34}$ 의 일의 자리의 숫자)= $(3^2$ 의 일의 자리의 숫자)=9

 $m-2n=22-2\times 9=4$

• 16쪽 •

11-1 4 11-2 1 11-3 3 11-4 2

11-1
$$\frac{8}{3}x^3y^2 \times \left(-\frac{1}{2}x^2\right)^3 = \frac{8}{3}x^3y^2 \times \left(-\frac{1}{8}x^6\right) = -\frac{1}{3}x^9y^2$$

11-2
$$(x^2y)^3 \times (-5xy^2) \times (-2xy^3)^4$$

= $x^6y^3 \times (-5xy^2) \times 16x^4y^{12}$
= $-80x^{11}y^{17}$
 $A = -80, B = 11, C = 17$
 $\therefore A + B + C = -80 + 11 + 17 = -52$

11-3 (좌번)=
$$ax^5 \times (-3xy^b)^2 \times \left(-\frac{1}{2}xy\right)^2$$

= $ax^5 \times 9x^2y^{2b} \times \frac{1}{4}x^2y^2$
= $\frac{9}{4}ax^9y^{2b+2}$
= $9x^6y^8$ 에서 $\frac{9}{4}a=9$, $2b+2=8$, $9=c$

18쪽

$$a=4, b=3, c=9$$

 $a+b+c=4+3+9=16$

11-4 (주어진 식)=
$$\frac{4}{9}a^4b^2 \times (-9a^4b) \times 2a = -8a^9b^3$$
 $a=-1, b=-2$ 를 대입하면 $-8 \times (-1)^9 \times (-2)^3 = -64$

유형 12 단항식의 나눗셈

• 16쪽 •

12-1 (주어진 식)=
$$28x^7y^5 imes rac{4}{x^2y} imes \left(-rac{1}{8x^3y^3}
ight) = -14x^2y$$

12-2 (주어진 식)=
$$\frac{9}{16}x^6y^4 \times \frac{64}{x^3y^6} = \frac{36x^3}{y^2}$$

 $\therefore a=36, b=3, c=2$
 $\therefore a+b+c=36+3+2=41$

12-3
$$-8a^6b^{12} \div a^4b^6 \div (-ab^4) = 8ab^2$$

 $ab^2 = \frac{3}{8}$ 이므로 $8ab^2 = 8 \times \frac{3}{8} = 3$

12-4 (주어진 식) =
$$\frac{9}{4}x^4y^2 \div \left\{ \left(-\frac{x^3y^6}{8} \right) \times \frac{4}{3x^5y^5} \right\}$$

$$= \frac{9}{4}x^4y^2 \div \left(-\frac{y}{6x^2} \right)$$

$$= \frac{9}{4}x^4y^2 \times \left(\frac{-6x^2}{y} \right)$$

$$= -\frac{27}{2}x^6y$$

$$a = -\frac{27}{2}, b = 6, c = 1$$
이므로
$$abc = -\frac{27}{2} \times 6 \times 1 = -81$$

12-5 (좌변)=
$$18x^{A}y^{3}$$
÷ $(Bx^{2}y)^{2}$ ÷ $\frac{y^{C}}{3x^{2}}=\frac{54x^{A-2}}{B^{2}y^{C-1}}$
 $\frac{54x^{A-2}}{B^{2}y^{C-1}}=\frac{6x^{4}}{y^{2}}$ 에서 $B^{2}=54\div 6=9,\ A-2=4,\ C-1=2$ 이므로 $A=6,\ B=3(\because B$ 는 자연수), $C=3$ $\therefore\ A+B+C=6+3+3=12$

유형 **13** 단항식의 곱셈과 나눗셈의 혼합 계산 • 17쪽 •

13-1 □ **13-2** ① **13-3** 8

13-1 ㄷ. (주어진 식)=
$$a^4b^2 \times \frac{a^2}{b^4} \times \frac{b^9}{a^3} = a^3b^7$$

13-2 (주어진 식)=
$$\frac{1}{2}xy^2 \times \left\{ (-8x^6y^3) \times \frac{1}{x^4y^2} \right\} \div \frac{5}{2}x^4y^2$$

$$= \frac{1}{2}xy^2 \times (-8x^2y) \div \frac{5}{2}x^4y^2$$

$$= \frac{1}{2}xy^2 \times (-8x^2y) \times \frac{2}{5x^4y^2}$$

$$= -\frac{8y}{5x}$$

13-3 우변의 부호가 음(-)이므로 좌변의 부호도 음이다. 즉, a는 짝수이어야 하고 $1 \le a \le 3$ 이므로 a = 2

유형 14 단항식의 계산에서 어떤 식 구하기

14-1 x^8y^5 **14-2** $A = -2x^4y$, $B = 54x^{10}y^4$ **14-3** 7

14-1
$$4x^6y^2 \times \frac{1}{\square} \times 3x^2y = \frac{12}{y^2}$$

$$\square = 4x^6y^2 \times 3x^2y \times \frac{y^2}{12} = x^8y^5$$

14-2
$$B = \frac{3}{2}x^8y^2 \times (6xy)^2 = \frac{3}{2}x^8y^2 \times 36x^2y^2 = 54x^{10}y^4$$

 $A = 54x^{10}y^4 \div (-3x^2y)^3 = 54x^{10}y^4 \div (-27x^6y^3)$
 $= -2x^4y$

14-3 (7)
$$A = 12x^3y^2 \times 2x^6y^2 \div 12x^5y^6 = \frac{2x^4}{y^2}$$

(4) $x^{15}y^6 \times \frac{9y^6}{4x^2} \div B = -\frac{9}{4}x^8y^{10}$
 $B = x^{15}y^6 \times \frac{9y^6}{4x^2} \times \left(-\frac{4}{9x^8y^{10}}\right) = -x^5y^2$
 $\therefore A \times B = \frac{2x^4}{y^2} \times (-x^5y^2) = -2x^9$
 $\therefore a = -2, b = 9, c = 0$ $\exists \exists \exists a + b + c = 7$

유형 **15** 단항식의 계산 -바르게 계산한 식 • 18쪽 •

15-1 ④ **15-2** ① **15-3** 14

15-1 어떤 식을 *A*라 하면

$$A \div 2a^3b^5 = \frac{2}{b^4} \text{ and } A = \frac{2}{b^4} \times 2a^3b^5 = 4a^3b^5 = 4a^3b$$

따라서 바르게 계산하면

 $4a^3b \times 2a^3b^5 = 8a^6b^6$

15-2 $A \times \frac{1}{5} a^3 b^2 = 5a^9 b^4$ $A = 5a^9 b^4 \times \frac{5}{a^3 b^2} = 25a^6 b^2$ 따라서 바르게 계산하면

 $25a^6b^2 \div \frac{1}{5}a^3b^2 = 25a^6b^2 \times \frac{5}{a^3b^2} = 125a^3 = (5a)^3$

15-3 어떤 식을 X라 하면

 $X \div 3xy^2 = 3x^5$ 에서 $A = 3x^5 \times 3xy^2 = 9x^6y^2$

따라서 바르게 계산하면

 $9x^6y^2 \times (3xy^2)^2 = 9x^6y^2 \times 9x^2y^4 = 81x^8y^6$

a = 81, b = 8, c = 6

h+c=8+6=14

유형 16 단항식의 곱셈의 활용

• 19쪽 •

16-1 34 **16-2** $\frac{9}{2}$ H **16-3** $72\pi a^7 b^8$

16-1 $x^3y^2 \times 2xy^4 \times (-3x^2y)^2$

 $= x^3y^2 \times 2xy^4 \times 9x^4y^2$

 $=18x^8y^8$

a=18 b=8 c=8이므로 a+b+c=34

16-2 (원기둥 A의 부피)= $\pi \times r^2 \times h = \pi r^2 h (\text{cm}^3)$ 원기둥 B의 밑면의 반지름의 길이는 3r cm (∵ ㈜)이고

높이는 $\frac{1}{2}h$ cm(: (내))이다.

(원기둥 B의 부피)= $\pi \times (3r)^2 \times \frac{1}{2}h = \frac{9}{2}\pi r^2 h \text{ cm}^3$)

 $\therefore \frac{9}{2}\pi r^2 h \div \pi r^2 h = \frac{9}{2}(1)$

16-3 반지름의 길이가 $3a^2b^3$ 인 구의 겉넓이는

 $4\pi \times (3a^2b^3)^2 = 36\pi a^4b^6$

원기둥의 높이를 h라 하면 원기둥의 옆넓이는

 $2\pi \times 4a^3b^2 \times h = 8\pi a^3b^2h$

구의 겉넓이와 원기둥의 옆넓이가 같으므로

 $36\pi a^4 b^6 = 8\pi a^3 b^2 h$ $h = 36\pi a^4 b^6 \div 8\pi a^3 b^2 = \frac{9}{2} a b^4$

따라서 원기둥의 부피는 $\pi \times (4a^3b^2)^2 \times \frac{9}{2}ab^4 = 72\pi a^7b^8$

유형 17 단항식의 곱셈과 나눗셈의 활용

19쪽

17-1 ⑤ **17-2** $\frac{9}{2}ab^4$ **17-3** $8ab^5$

17-1 (평행사변형의 넓이)=(밑변의 길이)×(높이)이므로

 $(3a^3b^4)^3 = (-a^2b)^2 \times (\frac{1}{3})$

 $\therefore (\frac{1}{32}) = 27a^9b^{12} \times \frac{1}{a^4b^2} = 27a^5b^{10}$

17-2 직각삼각형 ABC를 AC를 축으로 하 여 1회전 시키면 오른쪽 그림과 같은 원 뿔이 생기므로

 $24\pi a^5 b^6 = \frac{1}{3}\pi \times (4a^2b)^2 \times h$

 $h=24\pi a^5 b^6 \times \frac{3}{\pi} \times \frac{1}{16a^4b^2} = \frac{9}{2}ab^4$

17-3 $-a^3 \times © = 2ab^2$ 이므로

 $=2ab^2 \div (-a^3) = -\frac{2b^2}{a^2}$

 $\oplus = -\frac{2b^2}{a^2} \times (-2a^2b) = 4b^3$

 $\therefore \mathcal{P} = 2ab^2 \times 4b^3 = 8ab^5$

2 다항식의 계산

》 유형 다지기

유형 18 다항식의 덧셈과 뺄셈

20쪽

18-1 (1)

18-2 가로의 길이 : 4x+4y+1, 세로의 길이 : -9x+11y+5

18-3 ② **18-4** (4)

18-1 (주어진 식)=2*a*-3*b*-3*a*+15*b*

=-a+12b

따라서 m=-1. n=12이므로 m-n=-13

- **18-2** (가로의 길이)=4x+y+3+(3y-2)=4x+4y+1(세로의 길이)=-6x+7y+5+(4y-3x)=-9x+11y+5
- **18-3** $\frac{2}{3}p + \frac{1}{6}q \left(-\frac{1}{2}p + \frac{1}{3}q\right)$ $=\frac{4}{6}p+\frac{1}{6}q+\frac{3}{6}p-\frac{2}{6}q$

$$=\frac{7}{6}p-\frac{1}{6}q$$
 p 의 계수는 $\frac{7}{6}$, q 의 계수는 $-\frac{1}{6}$ 이므로 구하려는 값은 $\frac{7}{6}+\left(-\frac{1}{6}\right)=1$

18-4
$$\left(\frac{1}{2}x-3\right)-\left(\frac{3}{5}x-a\right)=-\frac{1}{10}x-3+a$$

상수항이 -5 이므로 $-3+a=-5$, $a=-2$
 $2(x-by)+3(-4x-3y)=2x-2by-12x-9y$
 $=-10x+(-2b-9)y$
 y 의 계수가 -7 이므로 $-2b-9=-7$, $b=-1$
 $\therefore a+b=-3$

유형 19 이차식의 덧셈과 뺄셈

• 20쪽 •

19-1 (좌변)=
$$2(x^2-x+4)+(2x^2+x-5)$$

= $2x^2-2x+8+2x^2+x-5$
= $4x^2-x+3$
 $\therefore a=4, b=-1, c=3$ 이므로 $a+b+c=6$

- **19-2** ① *x*+1 → 일차식
 - $(2) y^2 3y \Rightarrow y$ 에 대한 이차식
 - ③ $-x^2+9 \Rightarrow x$ 에 대한 이차식
 - ④ $-2x^3 + 4x^2 2x$ ⇒ 이차식이 아니다.
 - ⑤ 미지수가 분모에 있으므로 이차식이 아니다.

19-3 (주어진 식)=
$$\frac{2(2x^2-5x+4)-3(x^2+3x+1)}{6}$$
$$=\frac{4x^2-10x+8-3x^2-9x-3}{6}$$
$$=\frac{x^2-19x+5}{6}$$

19-4
$$(M*N) \triangle M$$

 $= (3M-N) \triangle M$
 $= 3M-N-2M$
 $= M-N$
 $= (3x^3+2x^2y+xy^2-y^3)-(2x^3-x^2y-2xy^2)$
 $= x^3+3x^2y+3xy^2-y^3$ ··· ①
 식 ①의 모든 항의 계수의 합은 $1+3+3+(-1)=6$ 이다.
 ∴ $k=6$

유형 20 괄호가 있는 다항식의 계산

• 21쪽 •

20-1 ④ **20-2** ③ **20-3** 4 **20-4** ②

20-1 (주어진 식)=
$$3x^2+4-(2-3x-x^2-3x^2+4x-1)$$

= $3x^2+4+4x^2-x-1$
= $7x^2-x+3$

20-2 (주어진 식)=
$$a^2-(4a^2-a-2a^2-a+1)-2$$

= $a^2-2a^2+2a-1-2$
= $-a^2+2a-3$

20-3
$$6x - \{8x - (2x - y - 5x - y) - 6x\} - y$$

 $= 6x - \{8x - (-3x - 2y) - 6x\} - y$
 $= 6x - (5x + 2y) - y$
 $= 6x - 5x - 2y - y$
 $= x - 3y$
 x 의 계수는 1, y 의 계수는 -3 이므로 $a + b = 1 - (-3) = 4$

20-4 (좌년)=
$$4a - \{3b - a - (-2a - \Box - b)\}$$

= $4a - (3b - a + 2a + \Box + b)$
= $4a - (a + 4b + \Box)$
= $3a - 4b - \Box$
 $3a - 4b - \Box = 3a - 2b$ 이므로 $\Box = -2b$

유형 **21** 어떤 식 구하기 (1)

• 22쪽 •

21-1 (좌변)=
$$5x^2 - \{x^2 - (x^2 + 3x + \Box)\}$$

= $5x^2 + 3x + \Box$
 $5x^2 + 3x + \Box = 6x^2 + 3x - 2$ 에서 $\Box = x^2 - 2$

21-2
$$A = (2x^2 + 3x - 4) + (3x^2 - 2x + 4) = 5x^2 + x$$

 $A - (4x^2 - 5x + 3)$
 $= 5x^2 + x - 4x^2 + 5x - 3$
 $= x^2 + 6x - 3$
 $a = 1, b = 6, c = -3$ $\Rightarrow a = 1 + 6 \times (-3) = -18$

21-3 어떤 식을
$$A$$
라 하면
$$-5x^2+5x-3+A=-x^2+3x-2$$

$$\therefore A=4x^2-2x+1$$
 따라서 바르게 계산한 답은
$$-5x^2+5x-3-(4x^2-2x+1)=-9x^2+7x-4$$

$$\therefore a=-9, b=7, c=-4$$
이므로 $a+b+c=-6$

유형 22 단항식과 다항식의 곱셈

• 22쪽 •

- **22-1** -9 **22-2** 3개 **22-3** 0
- **22-1** (주어진 식)= $12x^2+8xy-20x-6x^2-15xy+12x$ $=6x^2-7xy-8x$ $\therefore a=6, b=-7, c=-8$ 이므로 a+b+c=-9
- **22-2** \vdash -x(4y-3z) = -4xy+3xz $= (5a+3b) \times ab = 5a^2b+3ab^2$
- **22-3** $2x(-x+ay-3) = -2x^2 + 2axy 6x$ 2a=4 $\therefore a=2$ $(-bx-5y-1) \times (-3xy) = 3bx^2y + 15xy^2 + 3xy$ 에서 3b = -6 : b = -2 $\therefore a+b=0$

유형 23 다항식과 단항식의 나눗셈

• 23쪽 •

- **23-1** ② **23-2** (4) **23-3** 세형. -2a+4b
- **23-1** (주어진 식)= $(12x^3y+8xy^2-10x^2y)\times\left(-\frac{3}{2xy}\right)$ $=-18x^2-12y+15x$ 따라서 x^2 의 계수는 -18, y의 계수는 -12, x의 계수는 15이므로 구하는 계수의 합은 -18-12+15=-15
- **23-2** (주어진 식)=-4x-y-(2x-4y)=-6x+3y: m = -6. n = -3이므로 mn = 18
- **23-3** 세형 : $\left(\frac{1}{4}a^2b \frac{1}{2}ab^2\right) \div \left(-\frac{1}{8}ab\right)$ $=\left(\frac{1}{4}a^2b-\frac{1}{2}ab^2\right)\times\left(-\frac{8}{ab}\right)$ =-2a+4b

유형 24 어떤 식 구하기 (2)

• 23쪽 •

- **24-1** $-3x^2y + 18xy^2$ **24-2** -6 **24-3** $2x^3 + 17x^2 + 16x$
- **24-1** $2x^2 + 8xy + \Box \div (-3y) = 3x^2 + 2xy$ $\Box \div (-3y) = x^2 - 6xy$ $\therefore \Box = (x^2 - 6xy) \times (-3y) = -3x^2y + 18xy^2$

24-2 어떤 다항식을 A라 하면

$$A = (3x+6y-18) \times \frac{2}{3}x = 2x^2 + 4xy - 12x$$

- ∴ 각 항의 계수의 합은 2+4+(-12)=-6
- **24-3** $A = \left(\frac{x}{4} + 2 + \frac{1}{x}\right) \times 4x = x^2 + 8x + 4$

$$B = (x^2 + 8x + 4) \times 4x = 4x^3 + 32x^2 + 16x$$

 $\therefore 4x^3 + 32x^2 + 16x - 2x^3 - 15x^2 = 2x^3 + 17x^2 + 16x$

유형 25 사칙연산이 혼합된 식의 계산

24쪽

- **25-1** 9 **25-2** 16 **25-3** -2

25-4 11

- **25-1** (주어진 식)= $2x^2+8x-(-4x^2+5)$ $=2x^2+8x+4x^2-5=6x^2+8x-5$ ∴ a=6, b=8. c=-5이므로
- **25-2** (개) (주어짓 식)=-x+2-3+2x=x-1 ∴ A=1

a+b+c=6+8+(-5)=9

- (나) (주어진 식)= $(4y-2x)\times(-2x)=-8xy+4x^2$
 - $\therefore B=4$
- (다) (주어진 식)=2a(2a+5b)+ab+2 $=4a^2+10ab+ab+2=4a^2+11ab+2$
 - ∴ *C*=11
- A + B + C = 1 + 4 + 11 = 16
- **25-3** (주어진 식)= $\frac{1}{3}$ {2 x^2 -6x-(- x^2 +3x)} $=\frac{1}{3}(3x^2-9x)=x^2-3x$

따라서 a=1. b=-3이므로 a+b=-2

- **25-4** $A = (21x^3 24x^2y) \div 3x = 7x^2 8xy$
 - A-2B(B-C)
 - $=7x^2-8xy-2\times 3x\times \{3x-(4y+x)\}\$
 - $=7x^2-8xy-6x(2x-4y)$
 - $=7x^2-8xy-12x^2+24xy$
 - $=-5x^2+16xy$
 - $\therefore x^2$ 의 계수는 -5, xy의 계수는 16이므로 -5+16=11

유형 26 도형에서의 활용

24쪽

26-2 (1) **26-3** $(-2a^2+16ab)$ m² **26-1** 24 **26-4** 3*a* – *b*

- **26-1** $3xy(2x-5y-1)=6x^2y-15xy^2-3xy$ ∴ A=6. B=-15. C=-3이므로 A-B-C=6-(-15)-(-3)=24
- **26-2** $(4a)^2 \times \pi \times (\stackrel{\smile}{\Sigma} \circ) = 4\pi a^4 b + 48\pi a^3 b + 16\pi a^2 b^3$ $(\frac{1}{32}) = \frac{4\pi a^4 b + 48\pi a^3 b + 16\pi a^2 b^3}{16\pi a^2}$ $=\frac{1}{4}a^2b+3ab+b^3$
- 26-3 (길이의 전체 넓이) $=(5a+b)\times 2a+(7b-4a)\times 2a-(2a)^2$ $=10a^2+2ab+14ab-8a^2-4a^2$ $=-2a^2+16ab(m^2)$
- 26-4 (상자 전체의 높이) =(큰 직육면체의 높이)+(작은 직육면체의 높이)이므로 $x = (8a^2 + 16ab) \div 8a + (8a^2 - 12ab) \div 4a$ =a+2b+2a-3b=3a-b

식의 값 구하기 유형 27

• 25쪽 •

27-1 택연 **27-2** -47 **27-3** −28 **27-4** -20

- **27-1** 우징 : (주어진 식)=24x²y+16xy²=288-288=0 선미 : (주어진 식)= $-\frac{1}{2}x^2+2xy=-2-12=-14$ 택연 : (주어진 식)= $-4x+\frac{4}{3}y^2$ =8+12=20
- **27-2** (주어진 식)= $3x-3y^2-2y^2+x=4x-5y^2$ $=4\times\left(-\frac{1}{2}\right)-5\times3^{2}=-47$
- **27-3** (주어진 식)=3ab-4b²+2bc-10ab-15b²-5bc $=-7ab-19b^2-3bc\cdots$ a=-3, b=2, c=-1을 \bigcirc 에 대입하면 42 - 76 + 6 = -28
- **27-4** $18^4 = (2 \times 3^2)^4 = 2^4 \times 3^8 = 2^a \times 3^{4b}$ 이므로 a = 4, b = 2(주어진 식)= $\frac{9a^3b^2-6a^2b^2}{-3ab} \times \frac{b}{2a} = -\frac{3}{2}ab^2+b^2$ $-\frac{3}{2}ab^2+b^2$ 에 a=4, b=2를 대입하면 $-\frac{3}{2} \times 4 \times 2^2 + 2^2 = -20$

Ⅲ. 일차부등식과 연립일차방정식

1 일차부등식

유형 01 부등식의 뜻

26쪽

01-1 2. 3 01-2 2

유형 02 문장을 부등식으로 나타내기

26쪽

02-1 (4)

02-2 $x \le 30$

02-3 (나), (라)

02-3 (7)) $a+10 \ge 2a$ (대) $10 \le x \le 27$

유형 03 부등식의 해

• 26쪽 •

03-1 4

03-2 ①, ⑤

03-3 ③

- **03-1** x=2를 대입하여 성립하는 것을 찾는다.
- **03-2** x=-1, 0, 1, 2, 3을 주어진 부등식에 각각 대입하여 해를 구하면
 - ① x=2.3
- ② x=-1, 0, 1 ③ 해가 없다.
- 4 x = -1, 0, 1, 2 5 x = -1, 0
- **03-3** ③ $4 \times (-5) + 3 = -17$

유형 04 부등식의 성질

• 27쪽 •

04-1 = **04-2** = **04-3** = **04-4** -b < a < -a < b

- **04-1** ㄱ. a = -1. b = -2이면 a > b이지만 $a^2 = 1 < b^2 = 4$ 이다. ㄴ. a=1, b=-1이면 a>b이지만 $\frac{1}{a}=1>\frac{1}{b}=-1$ 이다. c < 0이면 ac > bc에서 a < b이다.
- **04-2** ①, ②, ③, ④ > (5) <
- **04-3** ① a-b>0 ② b-a<0③ a > 0의 양변을 b로 나누면 $\frac{a}{b} < 0$

- ⑤ a의 절댓값이 b의 절댓값보다 크면 a+b>0
- **04-4** a+b>0에서 0>a>-b이고 b > -a > 0이므로 -b < a < -a < b이다.

유형 05 부등식의 성질을 이용하여 식의 값의 범위 구하기 • 28쪽 •

05-1 ①

05-2 $\frac{16}{2}$ **05-3** 9

- **05-1** $x \ge -2$ 의 양변에 2를 곱하면 $2x \ge -4$ 이고 양변에 6을 더하면 $2x+6 \ge 2$ 따라서 2x+6의 값이 될 수 없는 수는 1이다.
- **05-2** $3x-2-3 \le 7-3$, $3x-5 \le 4$ $\therefore \frac{3x-5}{2} \le 2$ $\frac{3x-5}{2}$ 가 자연수가 되려면 $\frac{3x-5}{2}$ =1 또는 $\frac{3x-5}{2}$ =2 $\therefore x = \frac{7}{2} \stackrel{\text{L}}{=} x = 3$ 따라서 모든 x의 값의 합은 $\frac{7}{3} + 3 = \frac{16}{3}$
- **05-3** x+3y=5에서 x=5-3y $1 \le x < 2$ 이므로 $1 \le 5 - 3y < 2$ 각 변에서 5를 빼면 $-4 \le -3y < -3$ 각 변을 -3으로 나누면 $1 < y \le \frac{4}{3}$ 따라서 $a=1, b=\frac{4}{3}$ 이므로 a+6b=9

유형 06 일차부등식의 뜻

• 28쪽 •

06-1 4 06-2 5 06-3 1, **3**

- **06-1** ① 2>0
- 2 12 < 0 $3 \le 1 \ge 0$

- 4 x 1 < 0 $5 4x^2 5x + 9 > 0$
- **06-2** 2(x-3) > a(x-1)에서 2x-6 > ax-a, (2-a)x-6+a>0이 부등식이 일차부등식이 되기 위해서는 $2-a \neq 0$ 이어야 하므로 $a \neq 2$
- **06-3** ① 30=3x+2 (부등식이 아니다.) ③ $x^2 > 30$ (일차부등식이 아니다.) |참고| ② 100-x>50, ④ $\frac{x}{50}<2$, ⑤ $1.5+2x\leq25$

유형 07 일차부등식의 풀이

• 29쪽 •

07-1 ¬. = **07-2** ③ **07-3** *y*≥1

07-1 일차부등식을 풀면

 $\exists x > -3 \qquad \exists x > 3$

07-2 부등식의 양변에서 3을 빼면 $\frac{x}{5} \le 2$

양변에 5를 곱하면 $x \le 10$ 이다.

따라서 자연수 x는 1, 2, 3, 4, 5, 6, 7, 8, 9, 10이므로 10개이다

07-3 7-2x < -3의 해는 x > 5이므로 a = 5주어진 문장을 부등호를 사용하여 식으로 나타내면 $ay + 5 \ge 3y + 7$ 즉, $5y+5 \ge 3y+7$, $2y \ge 2$ $\therefore y \ge 1$

유형 08 일차부등식의 해를 수직선 위에 나타내기 • 29쪽 •

08-1 ③

08-2 풀이 참조 08-3 (내), (라)

- **08-1** 6x+1 < 3x-8, 3x < -9 $\therefore x < -3$
- **08-2** $26x-5 \ge 15x+61$ 에서 $11x \ge 66$

 $\therefore x \ge 6$

따라서 수직선 위에 나타내면

오른쪽 그림과 같다.

08-3 부등식의 해를 구하면

 $(7) x < 4 (4) x > 2 (5) x \ge -3 (6) x \le -9$

유형 09 괄호가 있는 일차부등식의 풀이

30쪽

09-1 ③ **09-2** 6 **09-3** ②

- **09-1** $4(x+1)-(x-1) \le 6\left(2x-\frac{20}{3}\right)$ 에서 괄호를 풀면 $4x+4-x+1 \le 12x-40$ $-9x \le -45$
 - $\therefore x > 5$
- **09-2** 2x+2>4x-6, -2x>-8 $\therefore x<4$ 주어진 부등식을 만족시키는 자연수 x는 1, 2, 3이므로

모든 x의 값의 합은 1+2+3=6

09-3 $4-x \ge -3(x-1)$ 에서 $4-x \ge -3x+3$ $2x \ge -1$ $\therefore x \ge -\frac{1}{2}$ 따라서 이 부등식을 만족시키는 가장 작은 정수 a=0 5(x-4) < 2(2+x)에서 5x-20 < 4+2x 3x < 24 $\therefore x < 8$ 따라서 이 부등식을 만족시키는 가장 큰 정수 b=7 $\therefore a-b=-7$

유형 10 계수가 분수 또는 소수인 일차부등식의 풀이 • 30쪽 •

10-1 ⑤ **10-2** $x \ge -14$ **10-3** ③ **10-4** 2 **10-5** ⑤

- **10-1** 0.05x+0.04>0.03x+0.1의 양변에 100을 곱하면 5x+4>3x+10.2x>6 ∴ x>3
- **10-3** 부등식의 양변에 10을 곱하면 3(2x−3)<35x+20에서 -29x<29이므로 x>−1 따라서 x의 값 중 가장 작은 정수는 0이다.
- 10-4 양변에 15를 곱하면
 5(3x-4)+15≤3(5-3x)+30x
 괄호를 풀면
 15x-20+15≤15-9x+30x
 -6x≤20 ∴ x≥-10/3
 따라서 가장 큰 음의 정수 x는 -1, 가장 작은 음의 정수는
 -3이므로 두 수의 차는 -1-(-3)=2이다.
- **10-5** $\frac{2}{5}x+2.1>0.2x+0.3$ 을 풀면 x>-9 x>-9에서 -5x<45, 4-5x<49, $\frac{4-5x}{7}<7$ $\therefore A<7$

유형 11 일차부등식의 해가 주어질 때, 미지수의 값 구하기 • 31쪽 •

11-1 ① 11-2 -7 11-3 ② 11-4 $x \ge \frac{1}{ab}$

- 11-1 ax-5>-15에서 ax>-10해가 x<5이므로 a<0 $x<-\frac{10}{a}$ 에서 $-\frac{10}{a}=5$ $\therefore a=-2$ $2x-3\times(-2)<0$ 에서 x<-3
- 11-2 $ax+9 \ge -(ax+5)$ 에서 $2ax \ge -14$ $2ax \ge -14$ 의 해가 $x \le 1$ 이므로 a < 0이때 $x \le -\frac{7}{a}$ 에서 $-\frac{7}{a} = 1$ $\therefore a = -7$
- 11-3 수직선 위에 나타난 해는 x>-1이다. ax-2x<8+2에서 (a-2)x<10 해가 x>-1이므로 a-2<0 $\therefore x>\frac{10}{a-2}$ $\frac{10}{a-2}=-1,\ a-2=-10$ $\therefore a=-8$
- 11-4 ax>1의 해가 $x>\frac{1}{a}$ 이므로 a>0 $bx<1의 해가 <math>x>\frac{1}{b}$ 이므로 b<0 따라서 ab<0이므로 $abx\leq1$ 의 해는 $x\geq\frac{1}{ab}$

유형 **12** x의 계수가 미지수인 일차부등식의 풀이 • 32쪽 •

12-1 -2 **12-2** ④ **12-3** ②

- **12-1** $-a(4+x) \ge ax$ 에서 $-4a-ax \ge ax$, $-2ax \ge 4a$ 이때 a > 0에서 -2a < 0이므로 $x \le -2$ 정수 x의 값 중 가장 큰 값은 -2이다.
- 12-2 5ax+2a>5x+2에서 5ax-5x>-2a+2 5(a-1)x>-2(a-1) a<1에서 5(a-1)<0이므로 $x<-\frac{2}{5}$
- 12-3 $(a+2b)x \ge 3b(x-1) + 3a$ 에서 동류항끼리 계산하여 부등식을 정리하면 $(a-b)x \ge 3(a-b)$ 이때 a < b에서 a-b < 0이므로 $x \le \frac{3(a-b)}{a-b}$ $\therefore x \le 3$

따라서 이 부등식을 만족시키는 자연수 x는 1, 2, 3의 3개이다.

일차부등식의 해 중 가장 큰 값(또는 작은 값) 이 주어질 때 미지수의 값 구하기

13-2 14 **13-3** $-\frac{3}{2} \le a < -\frac{15}{14}$

13-1 $\frac{x}{3} + a \ge \frac{5}{4} - \frac{1}{2}x$ 의 양변에 12를 곱하면

 $4x+12a \ge 15-6x$

 $10x \ge 15 - 12a$

$$\therefore x \ge \frac{15 - 12a}{10}$$

이 일치부등식의 해 중 가장 작은 수가 $-\frac{9}{2}$ 이므로

$$\frac{15-12a}{10} = -\frac{9}{2}$$
, $2(15-12a) = -90$,

15-12a=-45, -12a=-60

 $\therefore a=5$

13-2 가장 큰 수가 -1이므로 부등식의 해는 $x \le -1$

 $10+ax \le 12x+8$ 에서 $(a-12)x \le -2$

$$\therefore x \le -\frac{2}{a-12}$$

$$-\frac{2}{a-12} = -1, -2 = 12 - a$$
 : $a = 14$

13-3 $\frac{x+a}{3} - \frac{1}{4} < -\frac{5a+x}{6}$ 에서 양변에 12를 곱하면

$$4(x+a)-3 < -2(5a+x)$$

$$4x+4a-3 < -10a-2x$$

$$6x < -14a + 3$$
 : $x < \frac{-14a + 3}{6}$

$$\therefore x < \frac{-14a+3}{6}$$

x의 값 중 가장 큰 정수가 3이므로 $3 < \frac{-14a+3}{6} \le 4$

$$\therefore -\frac{3}{2} \le a < -\frac{15}{14}$$

두 일차부등식의 해가 서로 같을 때 미지수의 값 구하기

• 33쪽 •

14-1 17 **14-2** 3 **14-3** 8

14-1 $3(x-2) \le 5x$ 에서 $-2x \le 6$ ∴ $x \ge -3$

$$1 - \frac{x}{3} \le 2x + a$$
 $|A| \quad 3 - x \le 6x + 3a \quad \therefore x \ge \frac{3 - 3a}{7}$

$$-3 = \frac{3 - 3a}{7}$$
, $-21 = 3 - 3a$ $\therefore a = 8$

 $\therefore 2a+1=17$

14-2 식 □의 양변에 20을 곱하면

5(x-2)-4(2x-3)<20, 5x-10-8x+12<20.

$$-3x < 18$$
 $\therefore x > -6$

식 ⓒ의 양변에 10을 곱하면

13(2x-a) < 35x+15, 26x-13a < 35x+15.

$$-9x < 13a + 15$$
 $\therefore x > -\frac{13a + 15}{9}$

$$13a+15=54, 13a=39$$
 : $a=3$

14-3 $\frac{1}{4} \le \frac{6-x}{4} < 1$ 에서 각 변에 4를 곱하면 $1 \le 6 - x < 4$

각 변에서 6을 빼면 $-5 \le -x < -2$

 $\therefore 2 < x < 5$

두 일차부등식의 해가 같으므로 $2 < x \le 5$ 에서

 $4 < 2x \le 10$: $1 < 2x - 3 \le 7$

 $\therefore a=1, b=7$ 이므로 a+b=8

유형 15 일차부등식의 자연수인 해의 개수가 주어질 때, 미지수의 값 구하기

15-1 ⑤ **15-2** $\frac{3}{2} \le a < 2$ **15-3** ③

15-1 -3x+2a>9 -3x>9-2a

$$\therefore x < \frac{2a-9}{3}$$

 $x < \frac{2a-9}{3}$ 를 만족시키는 자연수 x의 개수가

4개이어야 하므로

$$4 < \frac{2a-9}{3} \le 5$$
 $\therefore \frac{21}{2} < a \le 12$

15-2 $5 < x \le 2a + 7$ 을 만족시키는 자연수 x는 6, 7, 8, 9, 10이 므로 조건을 만족시키는 a의 값의 범위는

 $10 \le 2a + 7 < 11$ 이므로 $3 \le 2a < 4$

 $\therefore \frac{3}{2} \le a < 2$

15-3 양변에 10을 곱하면

30x-5>12(3x-a), 30x-5>36x-12a.

-6x > 5 - 12a

$$\therefore x < \frac{12a-5}{6}$$

주어진 부등식을 만족시키는 자연수 x가 존재하지 않으므로

오른쪽 그림에서 $\frac{12a-5}{6} \le 1$,

 $12a - 5 \le 6$, $12a \le 11$ $\therefore a \le \frac{11}{12}$ 따라서 정수 a의 값 중 가장 큰 값은 0이다.

유형 16 수에 대한 문제

• 34쪽 •

16-2 22 **16-3** 332, 333, 334 **16-1** ③

- **16-1** 25 < 2x + 5 < 29, 20 < 2x < 24 $\therefore 10 < x < 12$ 따라서 어떤 자연수는 11이고 11보다 작은 자연수의 개수는 10개이다.
- **16-2** 두 정수를 x-10. x라 하면 (x-10)+x>30, 2x>40 $\therefore x > 20$ 이때 x는 짝수이므로 x의 최솟값은 22이다.
- **16-3** 연속하는 세 자연수를 x-1, x, x+1이라 하면 $(x-1)+x+(x+1) \le 1000$ $\therefore x \le \frac{1000}{3}$ 따라서 구하는 세 자연수는 332, 333, 334이다.

유형 17 평균에 대한 문제

• 34쪽 •

34쪽

17-1 77점 **17-2** ①

- 17-1 여섯 번까지의 평균 점수가 80점 이상이 되려면 여섯 번까 지의 총점은 $80 \times 6 = 480(점)$ 이상이어야 한다. 여섯 번째 시험 성적을 x점이라 하면 $82+75+87+82+77+x \ge 480, x \ge 77$ 따라서 여섯 번째 시험 점수가 77점 이상이면 평균이 80점 이상이 된다.
- **17-2** 여학생 수를 *x*명이라 하면 $170 \times 15 + 165 \times x \ge 168$ $2550+165x \ge 168(15+x)$

 $2550+165x \ge 2520+168x$

 $-3x \ge -30$ $\therefore x \le 10$

유형 18 최대 개수에 대한 문제

18-1 ③ 18-2 8개 **18-3** 13개 18-4 33명

- **18-1** 짐의 개수를 *x*개라 하면 $70 \times 4 + 150x \le 1300$ $150x \le 1020$ $\therefore x \leq 6.8$ 따라서 실을 수 있는 짐의 개수는 최대 6개이다.
- **18-2** 복숭아의 개수를 x개라 하면 사과의 개수는 (20-x)개이다. $1500x + 1000(20 - x) \le 24000$ $15x + 200 - 10x \le 240$ $5x \le 40$ $\therefore x \le 8$

따라서 복숭아는 최대 8개까지 살 수 있다.

18-3 음료수의 개수를 x개라 하면 $700x + 100 \times 3 \le 10000$ $7x + 3 \le 100$ $7x \le 97$ $\therefore x \leq \frac{97}{7} = 13\frac{6}{7}$ 따라서 음료수는 최대 13개이다.

18-4 반 학생 수를 *x* 명이라 하면 3000x - 7500 < 2700x + 2700, 300x < 10200 $\therefore x < 34$ 따라서 반의 학생 수는 최대 33명이다.

유형 19 추가 요금에 대한 문제

35쪽

19-1 32 **19-2** 350개 **19-3** ④

19-1 $\frac{16000+400(x-20)}{650}$ $16000 + 400x - 8000 \le 650x$ $-250x \le -8000$ $\therefore x \ge 32$

- **19-2** 동엽이가 한 달에 사용하는 문자메시지의 개수를 x개라 하면 $5000+30(x-250) \le 8000$ $500 + 3x - 750 \le 800$ $3x \le 1050$ $\therefore x \le 350$ 따라서 최대 350개까지 보낼 수 있다.
- 19-3 (대여료)+(연체료)<(정가)이어야 하므로 800+200(x-3)<100008+2(x-3)<1002x < 98 : x < 49따라서 도연이는 최대 48일까지 빌릴 수 있다.

유형 20 유리한 방법을 선택하는 문제

36쪽

20-1 8개 **20-2** 7회 **20-3** 36명 **20-4** 3대

20-1 물건을 x개 산다고 하면

상점에서 살 때 드는 비용은 2500x원, 할인마트에서 살 때의 비용은 (2300x+1500)원이므로

2500x > 2300x + 1500

200x > 1500 : x > 7.5

따라서 8개 이상 살 경우 할인마트에서 사는 것이 유리하다.

20-2 1년에 *x*회 이용한다고 하면

비회원인 경우: 2000x원

회원인 경우 : (6000+1000x)원

주어진 조건에서 2000x > 6000 + 1000x, 1000x > 6000 $\therefore x > 6$

따라서 7회 이상 이용하면 회원으로 가입하여 책을 주문하는 것이 비회원으로 주문하는 것보다 경제적이다.

20-3 인원 수를 *x* 명이라 하면

20명 이상 40명 미만인 단체 입장권을 살 때의 입장료는

$$3000 \times x \times \frac{80}{100} = 2400x(원)$$

40명 단체 입장권을 살 때의 입장료는

$$3000 \times 40 \times \frac{70}{100} = 84000(원)$$

즉, 2400x>84000 : x>35

따라서 36명 이상이면 40명 단체 입장권을 사는 것이 유리 하다

20-4 B 자동차의 수를 x대라고 하면 A 자동차의 수는 (8-x)대이므로

 $120 + 1200 \times \frac{2}{100}(8 - x) + 2000 \times \frac{2}{100}x \ge 360$

유형 21 예금액에 대한 문제

• 36쪽 •

21-1 9개월 후 **21-2** 12일 후 **21-3** 2500원

21-1 $5000+15000x \ge 3(10000+4000x)$ $5000+15000x \ge 30000+12000x$ $3000x \ge 25000$ $\therefore x \ge \frac{25}{3}$

따라서 9개월 후부터이다.

21-2 유경이가 *x*일 후에 옷을 살 수 있다면 12000+3500*x*≥54000

 $3500x \ge 42000$

 $\therefore x \ge 12$

21-3 매일 저금하는 금액을 x원이라 하면

 $30000 + 28x \ge 100000$ $\therefore x \ge 2500$

따라서 최소 2500원을 저금해야 한다.

유형 22

거리, 속력, 시간에 대한 문제

- 도중에 속력이 변하는 경우 ^{• 37쪽 •}

22-1 5 km **22-2** 3 km

22-1 시속 $5 \, \text{km}$ 로 뛴 거리를 $x \, \text{km}$ 라 하면 시속 $4 \, \text{km}$ 로 걸은 거리는 $(11-x) \, \text{km}$ 이므로

$$\frac{x}{5} + \frac{11-x}{4} \le \frac{150}{60}$$

 $4x+5(11-x) \le 50$

 $\therefore x \ge 5$

22-2 분속 180 m로 이동한 거리를 x m라 할 때

$$\frac{7000-x}{120} + \frac{x}{180} \le 50$$
 $\therefore x \ge 3000$

따라서 분속 180 m로 이동한 거리는 최소 3000 m = 3 km 이상이다.

유형 23 거리, 속력, 시간에 대한 문제 - 왕복에 대한 문제 • 37쪽 •

23-1 $\frac{22}{5}$ km **23-2** 2400 m **23-3** 하나, 사랑

23-1 올라갈 때의 거리를 x km라 하면 내려올 때의 거리는 (x+1) km이다.

소요된 시간이 2시간 이내이므로

$$\frac{x}{4} + \frac{x+1}{6} \le 2$$

 $3x+2(x+1) \le 24, 5x \le 22$ $\therefore x \le \frac{22}{5}$

따라서 올라갈 때 걸은 거리는 최대 $\frac{22}{5}$ km이다.

23-2 집에서 문구점까지의 거리를 x m라 하면

$$\frac{x}{60} + 10 + \frac{x}{80} \le 80$$
, $4x + 2400 + 3x \le 19200$,

 $7x \le 16800$

 $\therefore x \le 2400$

따라서 2400 m 이내이다

23-3 집에서 편의점까지의 거리를 x m라 하면

$$\frac{x}{60} + 4 + \frac{x}{70} \le 30$$

 $7x+1680+6x \le 12600$

 $\therefore x \leq 840$

따라서 도겸이가 다녀올 수 있는 편의점은 하나, 사랑이다.

유형 24 원가와 정가에 대한 문제

24-1 10000원 24-2 40000원 24-3 2600개

24-1 정가를 *x*원이라 하면

(파는 가격)= $x \times \frac{70}{100} = 0.7x(원)$

(이익)=(파는 가격)-(원가)=(0.7*x*−5600)원 ··· ⊙

이때 ①은 원가의 25% 이상이므로

 $0.7x - 5600 \ge 5600 \times 0.25, 7x \ge 70000$ $\therefore x \ge 10000$

따라서 정가를 최소 10000원 이상으로 정해야 한다.

24-2 원가를 *x*원이라 하면

 $1.15x - 3500 - x \ge 2500$

 $15x \ge 600000$

 $\therefore x \ge 40000$

24-3 한 달 동안 만든 토스트의 개수를 x개라 하면

토스트 1개당 이익이 4000-2500=1500(원)

 $1500x - 400000 \ge 3500000$

 $1500x \ge 39000000$ $\therefore x \ge 2600$

따라서 토스트를 2600개 이상 만들어야 한다.

유형 25 도형에 대한 문제

• 38쪽 ●

25-2 6 cm 25-3 11장 **25-1** x > 2

25-1 (가장 긴 변의 길이)<(나머지 두 변의 길이의 합)

x+3 < x+(x+1) $\therefore x > 2$

25-2 윗변의 길이를 *x* cm라 하면

$$\frac{1}{2} \times (x+12) \times 7 \ge 63$$

 $x+12 \ge 18$

 $\therefore x \ge 6$

25-3 종이를 x장 붙인다고 하면 큰 직사각형의 가로의 길이는

8+5(x-1)=5x+3(cm), 세로의 길이는 4 cm이므로

 $4 \times (5x+3) > 212$

20x+12>212, 20x>200 $\therefore x>10$

따라서 적어도 11장을 붙어야 한다.

유형 26 농도에 대한 문제

• 39쪽 ●

26-1 300 g **26-2** 50 g **26-3** 200 g

26-1 $\frac{9}{100} \times 600 \le \frac{6}{100} \times (600 + x)$

 $5400 \le 3600 + 6x$

 $6x \ge 1800$ $\therefore x \ge 300$

따라서 최소 300 g의 물을 넣어야 한다.

26-2 10 %의 소금물 300 g에 들어 있는 소금의 양은

$$\frac{10}{100} \times 300 = 30(g)$$

물을 xg 증발시킨다고 하면 $\frac{12}{100} \times (300-x) \le 30$

 $3600 - 12x \le 3000$

 $\therefore x \ge 50$

따라서 최소 50 g의 물을 증발시켜야 한다.

26-3 14 %의 소금물을 xg 섞는다고 하면

$$\frac{8}{100} \times (600 - x) + \frac{14}{100} x \ge \frac{10}{100} \times 600$$

 $4800 - 8x + 14x \ge 6000$

 $\therefore x \ge 200$

따라서 14 %의 소금물을 최소 200 g 이상 섞어야 한다.

성분의 함량에 대한 문제

• 39쪽 •

27-1 300 g **27-2** 400 g **27-3** 100 g **27-1** 합금 B의 양을 x g이라 하면 합금 A의 양은 (500-x) g

$$\frac{15}{100} \times (500 - x) + \frac{20}{100} x \ge 90$$

 $7500 - 15x + 20x \ge 9000$

 $5x \ge 1500$

 $\therefore x \ge 300$

27-2 합금 A의 양을 x g이라 하면 합금 B의 양은 (600-x) g

 $30x + 6000 - 10x \ge 14000$

 $20x \ge 8000$

 $\therefore x \ge 400$

27-3 1 g당 A 식품과 B 식품의 열량은 각각 2 cal, 3 cal이다. A 식품의 양을 x g이라 하면 B 식품의 양은 (300-x) g

 $2x+3(300-x) \ge 800$

 $2x+900-3x \ge 800$

 $-x \ge -100$ $\therefore x \le 100$

따라서 A 식품은 최대 100 g까지 먹을 수 있다.

유형 28 미지수가 2개인 일차방정식

28-1 나, ロ **28-2** 0

28-3 (1) 500x + 800y = 5300 (2) (1, 6), (9, 1)

28-4 a=3, $b\neq 2$

- **28-1** ㄱ. *y*의 차수가 2차
 - 다. 정리하면 3x-8=0 ➡ 미지수가 1개인 일차방정식
 - 리. xy의 차수가 2차
 - ㅂ. 정리하면 $x+2y \Rightarrow$ 등식이 아니다.
- **28-2** 2(x-4y)=3x-7y+3에서 우변의 모든 항을 좌변으로

2x-8y-3x+7y-3=0

-x-y-3=0

 $\therefore a = -1, b = -1$ 이므로 a - b = 0

- **28-4** 이항하여 정리하면 $(a-3)x^2+4x+(b-2)y-7=0$ 이 등식이 미지수가 2개인 일차방정식이려면 $a-3=0, b-2\neq 0$ 이어야 한다.
 - $\therefore a=3, b\neq 2$

유형 29 미지수가 2개인 일차방정식의 해

• 40쪽 •

29-1 ③. ⑤

29-2 (4)

29-3 4개

29-1 주어진 방정식에 대입하면 등식이 성립한다.

① $2 \times 1 + 8 = 10 \neq 9$

② $2 \times 4 - 1 = 7 \neq 9$

 $32 \times 2 + 5 = 9$

(4) 2×7-4=10 \neq 9

© $2 \times 5 - 1 = 9$

29-2 ④ 해의 조건이 주어지지 않았으므로 해는 무수히 많다.

(5) (1, 5), (4, 3), (7, 1)

29-3 $\frac{1}{2}x+y=9$ 의 해는 (2, 8), (4, 7), (6, 6), (8, 5),

(10, 4), (12, 3), (14, 2), (16, 1)이고

이중 x>2y인 것은 (10, 4), (12, 3), (14, 2), (16, 1)

이므로 구하는 개수는 4개이다.

유형 30 일차방정식의 해가 주어질 때, 미지수의 값 구하기 • 41쪽 •

30-1 (4) **30-2** 4 **30-3** 2

30-1 x=a, y=3을 4x-y=5에 대입하면 4a-3=5 $\therefore a=2$

30-2 x=a, y=4를 3x-y=5에 대입하면

3a-4=5 : a=3

x=2, y=b를 3x-y=5에 대입하면

6-b=5 $\therefore b=1$

 $\therefore a+b=4$

30-3 4x-ay-17=0에 x=2, y=9를 대입하면

8-9a-17=0 : a=-1

-x+3y=10에 x=-1, y=b를 대입하면

1+3b=10 : b=3 $\therefore a+b=2$

유형 31 연립방정식의 해

41쪽

- **31-2** (1) 2, 4, 6, 8 (2) 15, 12, 9, 6, 3 (3) x=6, y=4
- **31-3** 1

- **31-1** 각 일차방정식에 x=5, y=1을 대입하면

 - $\neg .3 \times 5 + 1 = 16$ $\vdash .-5 + 4 \times 1 \neq 1$

 - $\exists .5+2\times 1=7$ $\exists .3\times 5\neq 5\times 1$
- **31-2** (3) 표를 완성하여 공통인 해를 구하면 x=6, y=4
- **31-3** 2x+y=5의 해를 구하면 (1, 3), (2, 1) 3x-y=5의 해를 구하면 $(2, 1), (3, 4), (4, 7), \cdots$ 따라서 주어진 연립방정식의 해는 (2.1)이다
 - $\therefore a=2, b=1$ 이므로 a-b=1

유형 32 연립방정식의 해가 주어질 때 미지수의 값 구하기 • 42쪽 •

- **32-1** 7 **32-2** 2 **32-3** 5
- **32-1** x=2, y=-3 = 4x+y=a에 대입하면 8-3=a : a=5x=2, y=-3 = x-by=-7에 대입하면 2+3b=-7 : b=-3 $\therefore 2a+b=2\times 5-3=7$
- **32-2** 5x-3y=7에 y=1을 대입하면 5x-3=7 $\therefore x=2$ 즉. 연립방정식의 해가 x=2, y=1이므로 ax+y=5에 x=2, y=1을 대입하면 2a+1=5 $\therefore a=2$
- **32-3** x=m, y=m을 x-3y=-4에 대입하면 m-3m=-4 $\therefore m=2$ x=2, y=2를 x+2y=2n에 대입하면 2+4=2n $\therefore n=3$ $\therefore m+n=5$

유형 33 연립방정식의 풀이 - 가감법

• 42쪽 •

- **33-2** ③ **33-1** 45 **33-3** ①
- **33-1** y를 소거하기 위해 $\bigcirc \times 5 + \bigcirc \times 2$ 를 하면 38x = -19a = 5, b = 2, c = 38 $\therefore a+b+c=45$
- 33-2 $\left\{ egin{array}{ll} 2x+y=3 & \cdots & \bigcirc \\ 4x-2y=18 \cdots & \bigcirc \end{array} \right.$ 에서 $\bigcirc \times 2+\bigcirc$ 을 하면 8x = 24 : x = 3x=3을 \bigcirc 에 대입하면 6+y=3 $\therefore y=-3$

- a=3, b=-3을 am+b=0에 대입하면 3m-3=0 : m=1
- 33-3 각 순서쌍을 일차방정식에 대입하면

$$\begin{cases} 4a+b=-3 & \cdots \bigcirc \\ -2a-b=-3 & \cdots \bigcirc \end{cases}$$

¬+ⓒ을 하면 2a=-6 ∴ a=-3

a=-3을 \bigcirc 에 대입하여 풀면 b=9

 $\therefore a-b=-12$

유형 34 연립방정식의 풀이 - 대입법

43쪽

34-1 (-3, -12) **34-2** 10 **34-3** $\frac{1}{2}$

- **34-1** ①을 y에 관하여 풀면 y=4x … © y=4x를 ①에 대입하면 3x-8x=15-5x = 15 : x = -3x=-3을 ©에 대입하면 y=-12∴ 연립방정식의 해는 (−3, −12)이다.
- **34-2** ①을 ①에 대입하면 3(3y-1)+y=7. 10y=10 $\therefore a=10$
- **34-3** x+2y=10에서 x=-2y+10연립방정식 $\begin{cases} 3x + 2y = -2 \\ x = -2y + 10 \end{cases}$ 을 풀면 x = -6, y = 8x=-6. y=8 = ax+y=5에 대입하면 -6a+8=5 $\therefore a = \frac{1}{2}$
 - 유형 35 괄호가 있는 연립방정식

• 43쪽 •

35-1 (5) **35-2** ② **35-3** ④

- - 이 연립방정식을 풀면 x=4, y=-4
 - $\therefore a=4, b=4$ 이므로 a+b=8
- **35-2** 3(5x-2)+y-7=2(x-y)를 간단히 하면

 $13x+3y=13 \cdots \bigcirc$

 \bigcirc 에 y=2(x-1)을 대입하면 13x+6(x-1)=13

19x=19 $\therefore x=1$

x=1을 y=2(x-1)을 대입하면 y=0

- **35-3** 3y:2x=3:1 에서 3y=6x ∴ y=2x ⋯ \bigcirc 2(x-3y)-3(2x-y)=-10을 간단히 정리하면 $-4x-3y=-10 \cdots \bigcirc$
 - \bigcirc ①을 연립하여 풀면 x=1, y=2
 - ∴ a=1, b=2이므로 2ab=4

유형 36 계수가 분수 또는 소수인 연립방정식 • 44쪽 •

36-1 ③ **36-2** x=2. y=3 **36-3** ②

36-1 연립방정식 $\left\{ \frac{x-2}{3} + \frac{3}{4}y = \frac{4}{3} \cdots \right\}$ 에서

①×12. Û×10을 하면

$${4(x-2)+9y=16 \atop 4x-3y=72} \rightarrow {4x+9y=24 \atop 4x-3y=72}$$

x = 15, y = -4

따라서 a=15, b=-4이므로 a+3b=3

36-2 0.7x+1.3y=5.3에서 양변에 10을 곱하면 $7x+13y=53 \cdots \bigcirc$

$$\frac{3x+2y}{2} - \frac{x-y}{3} = \frac{19}{3}$$

양변에 6을 곱하여 정리하면 $7x+8y=38 \cdots$ \bigcirc

- \bigcirc , \bigcirc 을 연립하여 풀면 x=2, y=3
- **36-3** 연립방정식 $\left\{ \frac{\frac{3}{9}x + \frac{4}{9}y = -\frac{10}{9} \cdots \odot}{\frac{9}{9}} \right\}$ 을 연립하여 풀면

x = -2, y = -1

따라서 a=-2. b=-1이므로 a+b=-3

유형37 A=B=C 꼴의 방정식

● 44쪽 ●

37-2 ③ **37-3** ⑤ **37-1** 4

37-1 $\left\{ \begin{array}{l} 5x - 4y - 10 = 2x + y \\ 3(x - 2) + 2y = 2x + y \end{array} \right.$ 연립방정식을 풀면 x=5, y=12a+1=5에서 a=2

- 3-b=1에서 b=2
- $\therefore a+b=4$
- **37-2** (b. -3)을 대입하면

$$-3+1=b-3a=-b+3-1$$

즉,
$$\begin{cases} -3a+b=-2 \\ -b+2=-2 \end{cases}$$
 를 풀면 $a=2$, $b=4$

- $\therefore a+b=6$
- 37-3 $\begin{cases} \frac{2a-3b+2}{5} = -3 \\ \frac{-a+b-19}{5} = -3 \end{cases}$ and $\begin{cases} 2a-3b=-17 \cdots \bigcirc \\ -a+b=7 \cdots \bigcirc \end{cases}$
 - \bigcirc 요을 연립하여 풀면 a=-4 b=3
 - $\therefore m = -4$. n = 3이므로 mn = -12

유형 38 연립방정식의 해가 주어진 경우 미지수 구하기 • 45쪽 •

38-1 −7 **38-2** ③ **38-3** 6

38-1 x=-2, y=1을 주어진 연립방정식에 대입하면

$$\left\{egin{array}{ll} -2a+b=5 \ -2b+a=2 \end{array}
ight.$$
이므로 연립방정식을 풀면 $a=-4$, $b=-3$

- $\therefore a+b=-7$
- **38-2** x=3, y=b를 두 식에 각각 대입하면

$$\begin{cases} (3a+b): (9+2b)=2:1 \\ 6-5b=4a \end{cases} \rightarrow \begin{cases} 3a-3b=18 \\ 4a+5b=6 \end{cases}$$

연립하여 풀면 a=4. b=-2

따라서 a-b=6

38-3 x=4. y=5이므로

연립방정식에 대입하면 $\begin{cases} 4=5b-11 & \cdots & \bigcirc \\ 4a-5b=-7 & \cdots & \bigcirc \end{cases}$

- \bigcirc 에서 5b=15 $\therefore b=3$
- \bigcirc 에서 4a-15=-7 $\therefore a=2$
- $\therefore ab = 6$

유형 39 연립방정식의 해의 조건이 주어진 경우 • 45쪽 •

39-1 2 **39-2** -11 **39-3** ②

39-1 연립방정식 $\begin{cases} x+y=-3 \\ y=2x \end{cases}$ 를 풀면 x=-1, y=-2

x=-1, y=-2를 x-2y=k+1에 대입하면 -1+4=k+1 $\therefore k=2$

- 39-2 연립방정식 $\begin{cases} x-y=3 \\ 2(x-3y)=6-y \end{cases}$ 에서 $\begin{cases} x=y+3 \\ 2x-5y=6 \end{cases}$ 이 연립방정식을 풀면 $x=3,\ y=0$ $x=3,\ y=0$ 을 4(x+y)-k(y-1)=1에 대입하면 $4\times 3-k\times (-1)=1$ $\therefore k=-11$
- 39-3 x: y=3: 1이므로 x=3y x=3y를 연립방정식에 대입하면 $\begin{cases} 6y+y=2a-3 \\ -3y+2y=a \end{cases} \rightarrow \begin{cases} 7y=2a-3 & \cdots & \bigcirc \\ y=-a & \cdots & \bigcirc \end{cases}$ ①을 ①에 대입하여 풀면 $a=\frac{1}{3}$ $\therefore 6a+1=3$

유형 40 두 연립방정식의 해가 같은 경우

• 46쪽 •

40-1 7 **40-2** -1 **40-3** -2

- 40-1 연립방정식 $\begin{cases} x+2y=7 \\ x+3y=9 \end{cases}$ 를 풀면 x=3, y=2 x=3, y=2를 ax-4y=7에 대입하면 3a-8=7 a=5 x=3, y=2, a=5를 ax+by=11에 대입하면 a=5 a=5
- 40-2 두 연립방정식의 해가 서로 같으므로 네 일차방정식이 공통인 해를 가진다. 연립방정식 $\begin{cases} x+y=-5 \\ 4x-3y=1 \end{cases}$ 을 풀면 x=-2, y=-3 x=-2, y=-3을 x+ny=4, mx-y=1에 각각 대입하면 -2-3n=4 $\therefore n=-2$ -2m+3=1 $\therefore m+n=-1$
- **40-3** 연립방정식 $\begin{cases} 3x+4y=3 \\ -2x+3y=15 \end{cases}$ 를 풀면 x=-3, y=3 x=-3, y=3을 $\begin{cases} bx+ay=-9 \\ ax-by=-3 \end{cases}$ 에 대입하면

$$3a-3b=-9$$

 $-3a-3b=-3$
이 연립방정식을 풀면 $a=-1$, $b=2$
 $\therefore ab=-2$

유형 41 잘못 보고 해를 구한 경우

46쪽

41-1 14 **41-2** x=3, y=-1 **41-3** -1

- 41-1 \bigcirc 의 4를 A로 잘못 보고 풀었다면 $-x-2y=A\cdots$ \bigcirc y=-4를 \bigcirc 에 대입하면 x+16=10 $\therefore x=-6$ x=-6, y=-4를 \bigcirc 에 대입하면 6+8=A $\therefore A=14$ 따라서 4를 14로 잘못 보았다.
- 41-2 x=-1, y=3을 $\begin{cases} bx+ay=12\\ ax+by=4 \end{cases}$ 에 대입하면 $\begin{cases} 3a-b=12 & \cdots & \bigcirc \\ -a+3b=4 & \cdots & \bigcirc \end{cases}$ \bigcirc 은을 연립하여 풀면 a=5, b=3 따라서 처음 연립방정식 $\begin{cases} 5x+3y=12\\ 3x+5y=4 \end{cases}$ 를 풀면 x=3, y=-1
- 41-3 경훈이는 a를 잘못 보고 풀었으므로 bx+2y=8에 $x=-1, y=\frac{15}{2}$ 를 대입하면 -b+15=8 $\therefore b=7$ 지혜는 b를 잘못 보고 풀었으므로 -3x+ay=-12에 $x=-\frac{2}{3}, y=-7$ 을 대입하면 2-7a=-12 $\therefore a=2$ 따라서 연립방정식 $\begin{cases} -3x+2y=-12 \\ 7x+2y=8 \end{cases}$ 을 풀면 x=2, y=-3 $\therefore 2+(-3)=-1$

유형 42 특수한 해를 가진 연립방정식

人7交

42-1 ①, ⑤ **42-2** 1 **42-3** 난희, 로빈 **42-4** $a \ne -1$, b = 13 **42-5** 5 **42-6** 4

42-1 ② x=0, y=-3 (해 1개) ③ $x=\frac{4}{3}$, y=0 (해 1개) ④ 해가 없다.

- **42-2** 2x+(a+2)y=-3의 양변에 -3을 곱하면 -6x-3(a+2)y=9 $\begin{cases} -6x-3(a+2)y=9 \\ -6x-9y=2 \end{cases}$ 의 해가 없으므로 x, y의 계수는 같고 상수항은 달라야 하므로 -3(a+2)=-9 ∴ a=1
- **42-3** 기영 : a=4, b=-4이면 해가 무수히 많다. 도진 : $a \neq 4$, b=-4이면 해가 1개이다.
- 42-4 $\begin{cases} x-5y=a \\ 2x+3y=by-2 \end{cases}$ \Rightarrow $\begin{cases} 2x-10y=2a \\ 2x+(3-b)y=-2 \end{cases}$ 이 연립방정식은 해가 없어야 하므로 x, y의 계수는 같지만 상수항은 달라야 한다.

 $-10=3-b, 2a \neq -2$ $\therefore a \neq -1, b=13$

- 42-5 $\begin{cases} (a-4)x-4y=12 \\ 2x+y=b \end{cases}$ 의 해가 무수히 많으려면 $\frac{a-4}{2}=\frac{-4}{1}=\frac{12}{b}$ 즉, a-4=-8에서 a=-4, -4b=12에서 b=-3 $\therefore a-3b=5$
- 42-6 $\begin{cases} 2ax+3y=9 \\ 2x+y=a \end{cases}$ 에서 $\begin{cases} 2ax+3y=9 \\ 6x+3y=3a \end{cases}$ 이므로 a=3 a=3을 (m-a-1)x-2m+3=0에 대입하면 (m-4)x=2m-3 이 일차방정식이 해를 가지지 않아야 하므로 $0\times x=(0$ 이 아닌 수)의 꼴이 되어야 한다. m=4

유형 43 수에 대한 문제

● 48쪽 ●

43-1 *a*=23, *b*=5 **43-2** 24 **43-3** 36

- 43-1 ${a=4b+3 \atop 2a=9b+1}$ \Rightarrow ${2a=8b+6 \atop 2a=9b+1}$ 연립방정식을 풀면 a=23, b=5

- $\therefore x=2, y=4$ 따라서 처음 자연수는 24이다.
- 43-3 십의 자리의 숫자를 x, 일의 자리의 숫자를 y라 하면 $\begin{cases} 10x+y=4(x+y)\\ 10y+x=10x+y+27 \end{cases} \Longrightarrow \begin{cases} 6x-3y=0\\ -9x+9y=27 \end{cases}$ 연립하여 풀면 $x=3,\ y=6$ 따라서 처음 자연수는 36이다.

유형 44 나이에 대한 문제

48쪽

44-1 35세 **44-2** 10살 **44-3** 23세

- **44-1** 현재 아버지의 나이를 x세, 아들의 나이를 y세라 하면 $\begin{cases} x+y=75 \\ \dots & x=50, y=25 \end{cases}$
 - ∴ 10년 후의 아들의 나이는 25+10=35(세)이다.

x = 10, y = 24

- :. 동생의 나이는 10살이다.
- 44-3 현재 큰아버지와 혜인이의 나이를 각각 x세, y세라 하면 $\begin{cases} x-6 = 3(y-6) \\ x+11 = 2(y+11) \end{cases}$
 - 이 연립방정식을 풀면 x=57, y=23따라서 현재 헤인이의 나이는 23세이다.

유형 45 가격, 개수, 사람 수에 대한 문제

• 49쪼

45-1 2개 **45-2** 100개 **45-3** 70 kg **45-4** 남학생 16명, 여학생 18명

45-1 복숭아를 x개, 자두를 y개 샀다고 하면

 ${x+y=12 \atop 900x+800y+1000=11300} \implies {x+y=12 \atop 9x+8y=103}$

 $\therefore x=7, y=5$

따라서 복숭아를 자두보다 2개 더 샀다.

45-2 합격품을 x개, 불량품을 y개라 하면

$$x+y=1000$$

300x - 500y = 220000

이 연립방정식을 풀면 x=900, y=100

따라서 이날 불량품의 개수는 100개이다.

45-3 화강암 벽돌 1장의 무게를 $x \log$ 현무암 벽돌 1장의 무게를 y kg이라 하면 주어진 관계에서 3x+y=30, x+3y=34이다

두 식을 연립하여 풀면 x=7, y=9따라서 화강암 10장의 무게는 70 kg이다

45-4 남학생과 여학생 수를 각각 x명, y명이라 하고 연립방정식을 세우면

$$x+y=34$$

$$\left\{\frac{1}{4}x + \frac{1}{6}y = 7\right\}$$

 $\left\{ \frac{1}{4}x + \frac{1}{6}y = 7 \right\}$ $\therefore x = 16, y = 18$

따라서 남학생은 16명, 여학생은 18명이다.

유형 46 도형에 대한 문제

46-1 55 cm

46-2 ②

46-3 a=10, b=16

46-1 긴 줄의 길이를 x cm. 짧은 줄의 길이를 y cm라 하면

$$\int x+y=7$$

|x=3y+10|

x = 55, y = 15

따라서 긴 줄의 길이는 55 cm이다.

46-2 처음 직사각형의 가로의 길이를 x cm. 세로의 길이를 y cm 라 하면

$$(2(x+y)=38)$$

(2(3x+y-3)=72)

이 연립방정식을 풀면 x=10, y=9

따라서 처음 직사각형의 가로의 길이는 10 cm이다.

46-3 에서 a < b이므로 b - a = 6 ··· \bigcirc

(나)에서 3a+4b=94 ··· ①

 \bigcirc . \bigcirc 을 연립하여 풀면 a=10, b=16

유형 47 횟수에 대한 문제

50쪽

47-1 2개 47-3 32회 **47-2** 15

$$\rightarrow \begin{cases} x+y=5\\ 9x+10y=48 \end{cases}$$

 $\therefore x=2, y=3$

따라서 9점에 꽂힌 화살의 개수는 2개이다.

47-2 연립방정식 $\begin{cases} a+b=8 \\ 4a+5b=35 \end{cases}$ 를 풀면 a=5, b=3

 $\therefore ab = 15$

47-3 지효가 이긴 횟수를 x번, 종국이가 이긴 횟수를 y번이라 하면 3x-2y=21

$$-2x+3y=11$$

연립방정식을 풀면 x=17, y=15

따라서 모두 17+15=32(회)의 가위바위보를 하였다.

유형 48 원가, 정가에 대한 문제

• 50쪽 •

48-1 4500워

48-2 50개

48-3 20000위

48-1 A 생선의 정가를 x원, B 과일의 정가를 y원이라 하면

$$62x+6y=15000$$

 $0.1 \times 2x + 0.2 \times 6y = 15000 - 12900$

x = 4500, y = 1000

따라서 A 생선의 정가는 4500원이다.

48-2 A 볼펜의 판매 개수는 x개. B 볼펜의 판매 개수는 y개라 하면

$$x+y=150$$

$$\left\{ \frac{30}{100} \times 500x + \frac{25}{100} \times 400y = 17500 \right\}$$

x = 50, y = 100

48-3 A 제품의 원가를 x원, B 제품의 원가를 y원이라 하면

A. B 제품의 두 정가는 각각 (x+0.2x)원. (y+0.3y)원

A. B 제품의 판매가는 각각

 $1.2x \times (1-0.1) = 1.08x(원)$,

 $1.3y \times (1-0.1) = 1.17y(2)$

연립방정식을 세우면

$${x+y=30000 \brace 1.08x+1.17y=33300} \Rightarrow {x+y=30000 \brace 12x+13y=370000}$$

 $\therefore x = 20000, y = 10000$

따라서 A 제품의 원가는 20000원이다.

유형 49 증가, 감소에 대한 문제

• 51쪽 •

49-1 343명

49-2 10500원

49-3 (4)

49-1 작년의 남학생 수를 x명, 여학생 수를 y명이라 하면

$$\begin{cases} x+y=690 \\ \frac{5}{100}x - \frac{2}{100}y = 700 - 690 \end{cases} \rightarrow \begin{cases} x+y=690 \\ 5x - 2y = 1000 \end{cases}$$

 $\therefore x = 340, y = 350$

작년의 여학생 수가 350명이고 올해에는 2% 감소하였으므로 올해의 여학생 수는 $350 - \frac{2}{100} \times 350 = 343(명)$

49-2 민아가 저축한 돈을 x원, 은지가 저축한 돈을 y원이라 하면

x+y=560000

0.15x - 0.03y = 21000

두 식을 연립하여 풀면 x=210000, y=350000이므로 은지가 쓴 돈은 원래 은지가 저축한 금액 35만 원의 3 %인 10500원이다.

49-3 작년 A, B 두 마을의 추수한 곡식량을 각각 x톤, y톤이라 하고 연립방정식을 세우면

$$\begin{cases} x+y=800 & \cdots \bigcirc \\ 0.2x-0.2y=-0.05\times 800 & \cdots \bigcirc \end{cases}$$

x = 300, y = 500

올해 A, B 마을의 추수한 곡식량은 각각

 $300 \times 1.2 = 360(톤)$, $500 \times 0.8 = 400(톤)$ 이므로

수확량의 차이는 40톤이다.

|참고| 위 연립방정식의 \mathbb{C} 을 $1.2x+0.8y=0.95\times800$ 과 같이 세울 수도 있다.

유형 50 일에 대한 문제

• 51쪽 •

50-1 ③

50-2 90분

50-3 8시간

50-1 서진이와 윤희가 하루 동안 할 수 있는 일의 양을 각각 *x*, *y* 라 하고 총 일의 양을 1이라 하면

$$\int 12x + 12y = 1$$

|8x+24y=1|

연립방정식을 풀면 $x=\frac{1}{16}$, $y=\frac{1}{48}$ 이므로 서진이가 혼자 서 일을 다 끝마치는 데 걸리는 기간은 16일이다.

50-2 A가 작업한 시간을 x시간, B가 작업한 시간을 y시간이라 하면 두 사람이 작업한 시간의 합은 $x+y=\frac{9}{4}$ … \bigcirc

전체 컴퓨터 작업의 양을 1이라 하면 A가 1시간 동안 할 수 있는 일의 양은 $\frac{1}{3}$, B가 1시간 동안 할 수 있는 일의 양은 $\frac{1}{2}$

이므로
$$\frac{1}{3}x + \frac{1}{2}y = 1$$
 ··· ©

두 식 \bigcirc , \bigcirc 을 연립하여 풀면 $x=\frac{3}{4}$, $y=\frac{3}{2}$

따라서 B가 컴퓨터 작업을 한 시간은 $\frac{3}{2} \times 60 = 90$ (분)

50-3 물탱크에 물이 가득 차 있을 때의 물의 양을 1로 놓고 A, B 호스로 1시간 동안 뺄 수 있는 물의 양을 각각 x, y라 하면

$$\begin{cases} 2x + 3y = 1 \\ 4x + 2y = 1 \end{cases} \quad \therefore x = \frac{1}{8}, y = \frac{1}{4}$$

따라서 A 호스만으로 물을 모두 빼는 데 걸리는 시간은 8시간이다.

유형 51

거리, 속력, 시간에 대한 문제 - 중간에 속력이 바뀌는 경우

51-1 2 km **51-2** ⑤ **51-3** 4 km

51-1 집에서 주차장까지의 거리를 x km, 주차장에서 불국사까지의 거리를 y km라 하면

$$\begin{cases} x+y=152 \\ \frac{x}{60} + \frac{y}{4} = 3 \end{cases} \quad \therefore x=150, y=2$$

따라서 주차장에서 불국사까지의 거리는 2 km이다.

51-2 A에서 P까지의 거리를 x km, P에서 B까지의 거리를 y km라 하면

$$x+y=18$$

$$\left\{ \frac{x}{3} + \frac{y}{2} = 7 \right\} \quad \therefore x = 12, y = 6$$

따라서 A에서 P까지의 가는데 걸린 시간은 $\frac{12}{3} = 4$ (시간) 이다

51-3 자전거를 타고 간 거리를 x km, 걸어간 거리를 y km라 하면

$$\begin{cases} x + y = 24 \\ \frac{x}{10} + \frac{y}{5} = 2\frac{48}{60} \end{cases} \rightarrow \begin{cases} x + y = 24 \\ x + 2y = 28 \end{cases}$$

x = 20, y = 4

따라서 걸어간 거리는 4 km이다.

유형 52 거리, 속력, 시간에 대한 문제 - 만나는 경우 • 52쪽 •

52-1 ③ **52-2** 3 **52-3** x=8, y=1

- **52-1** 민선이와 은경이가 1분 동안 걸은 거리를 각각 *x* m, *y* m라 하면 *x* : *y* = 60 : 40에서 3*y* = 2*x* ··· ① 8분 동안 둘이 걸은 거리의 합이 1600 m이므로 8*x* + 8*y* = 1600 ··· ①
 - ①, \bigcirc 을 연립해서 풀면 x=120, y=80 따라서 민선이가 1분 동안에 걸은 거리는 120 m이다.
- 52-2 지희와 성은이가 걸은 거리를 각각 x m, y m라 하면 x: y=300: 500에서 3y=5x ··· ① 두 사람이 걸은 거리의 합이 2400 m이므로 x+y=2400 ··· ② 두 식 ③, ②을 연립하여 풀면 x=900, y=1500 따라서 두 사람이 걸은 시간은 900÷300=3(분)이므로 a=3
- 52-3 (i) 자전거와 같은 방향으로 갈 경우

자전거
$$2$$
 $\frac{10}{60} \times 2 = \frac{2}{6}$ 자전거 2 $\frac{10}{60} \times x = \frac{1}{6}x$

(자전거 사이의 거리)+(정현이가 이동한 거리) =(뒤의 자전거가 이동한 거리)이므로

$$y + \frac{2}{6} = \frac{1}{6}x$$

(ii) 자전거가 반대 방향으로 갈 경우

정현 :
$$\frac{6}{60} \times 2 = \frac{2}{10} \underbrace{\frac{6}{60} \times x = \frac{1}{10}x}$$
 3 $\underbrace{\qquad \qquad \qquad }$ 자전거 ④

(뒤의 자전거가 이동한 거리)+(정현이가 이동한 거리) =(자전거 사이의 거리)이므로

$$\frac{1}{10}x + \frac{2}{10} = y$$

(i). (ii)의 두 식을 연립하여 풀면 x=8, y=1

유형 **53** 거리, 속력, 시간에 대한 문제 - 트랙을 도는 경우 • 53쪽 •

53-1 40분 **53-2** 시속 7 km **53-3** 180 m/분

53-1 경호의 속력을 시속 x km, 연주의 속력을 시속 y km라 하고 연립방정식을 세우면

 $\therefore x=3, y=2$

따라서 경호의 속력은 시속 3 km이므로 호수를 한 바퀴 도는 데 걸리는 시간은 $\frac{2}{3}$ 시간, 즉 40분이다.

53-2 A와 B의 속력을 각각 시속 x km, y km라 하면

$$\begin{cases} x-y=4 \\ \frac{24}{60}(x+y)=4 \end{cases} \rightarrow \begin{cases} x-y=4 \\ x+y=10 \end{cases}$$

x = 7, y = 3

따라서 A의 속력은 시속 7 km이다.

53-3 빠른 사람의 속력을 x m/분, 느린 사람의 속력을 y m/분이 라 하면

$${ \begin{pmatrix} (x-y) \times 10 = 1200 \\ (x+y) \times 5 = 1200 \end{pmatrix} \rightarrow { \begin{pmatrix} x-y = 120 \\ x+y = 240 \end{pmatrix}}$$

∴ *x*=180, *y*=60 따라서 빠른 사람의 속력은 180 m/분

유형 **54** 거리, 속력, 시간에 대한 문제 - 강물과 배의 속력 • 53쪽 •

54-1 시속 4 km **54-2** ②

54-3 배 : 4 km/시, 강 : 1 km/시

54-1 정지한 물에서 보트의 속력을 시속 x km라 하고 강물의 속력을 시속 y km라 하면

$${ \begin{cases} 2(x+y) = 48 \\ 3(x-y) = 48 \end{cases}} \rightarrow { \begin{cases} x+y = 24 \\ x-y = 16 \end{cases}}$$

연립방정식을 풀면 x=20, y=4

따라서 강물의 속력은 시속 4 km이다.

54-2 정지한 물에서 카누의 속력을 시속 x km라 하고 강물의 속력을 시속 y km라 하면

$$\begin{cases} \frac{4}{3}(x+y)=20\\ 2(x-y)=20 \end{cases} \rightarrow \begin{cases} x+y=15\\ x-y=10 \end{cases}$$

연립방정식을 풀면 $x = \frac{25}{2}$, $y = \frac{5}{2}$

따라서 강물의 속력은 시속 2.5 km이다.

54-3 정지한 물에서 배의 속력을 시속 $x \, \mathrm{km}$ 라 하고 강물의 속력을 시속 $y \, \mathrm{km}$ 라 하면

$$\begin{cases} 2(x+y) = 10 \Longrightarrow x+y = 5 \cdots \bigcirc \\ \frac{15}{x+y} + \frac{15}{x-y} = 8 \cdots \bigcirc \end{cases}$$

 \bigcirc 을 \bigcirc 에 대입하여 정리하면 x-y=3 \cdots \boxdot

 \bigcirc 과 ©을 연립하여 풀면 x=4, y=1

따라서 배의 속력은 시속 $4 \, \mathrm{km}$, 강물의 속력은 시속 $1 \, \mathrm{km}$ 이다.

유형 55

거리, 속력, 시간에 대한 문제 - 기차가 터널 또는 다리를 지나는 경우

55-1 ① **55-2** 80 m

55-1 기차의 길이를 x m, 속력을 y m/분이라 하면

$$\frac{700+x}{y}$$
=5, $\frac{100+x}{y}$ =1

두 식을 연립하여 풀면 x=50, y=150

55-2 열차의 길이를 x m, 속력을 y m/초라 하면 $(거리)=(속력)\times(시간)$ 이고

열차가 터널을 완전히 통과할 때 간 거리는 (터널의 길이)+(열차의 길이)이므로

$$\begin{cases} 1600 + x = 70y \\ 640 + x = 30y \end{cases} \therefore x = 80, y = 24$$

따라서 열차의 길이는 80 m이다.

유형 **56** 농도에 대한 문제 - 소금물 또는 소금의 양 구하기 • 54쪽 •

56-1 200 g **56-2** 2 kg **56-3** 40 g **56-4** 162 g

56-1 12 %의 소금물을 x g, 18 %의 소금물을 y g 섞는다고 하면

$$\begin{bmatrix} 12 \% \\ x g \end{bmatrix} + \begin{bmatrix} 18 \% \\ y g \end{bmatrix} = \begin{bmatrix} 14 \% \\ 300 g \end{bmatrix}$$

$$\begin{cases} x+y=300\\ \frac{12}{100}x+\frac{18}{100}y=\frac{14}{100}\times 300 \end{cases} \Rightarrow \begin{cases} x+y=300\\ 2x+3y=700 \end{cases}$$

x = 200, y = 100

따라서 12 %의 소금물은 200 g 섞어야 한다.

56-2 6 %의 매실 과즙의 양을 x kg, 15 %의 매실 과즙의 양을 y kg이라 하면

$$\begin{cases} x+y=3\\ \frac{6}{100}x + \frac{15}{100}y = \frac{12}{100} \times 3 \end{cases} \Rightarrow \begin{cases} x+y=3\\ 6x+15y=36 \end{cases}$$

연립방정식을 풀면 x=1, y=2따라서 섞어야 할 15 %의 매실 과즙의 얏은 2 kg이다

56-3 10 %의 설탕물을 x g, 추가된 설탕의 양을 y g이라 하면

$$\begin{cases} \frac{x+y=600}{100} \\ \frac{10}{100} \times x + y = \frac{16}{100} \times 600 \end{cases} \xrightarrow{\bullet} \begin{cases} \frac{x+y=600}{x+10y=960} \\ \end{cases}$$

x = 560, y = 40

따라서 설탕의 양은 40 g이다.

56-4 4 %의 소금물을 x g, 6 %의 소금물의 양을 y g이라 하면 더 부은 물의 양은 4 %의 소금물의 3배이므로 3x g 소금물의 양은 4x+y=360

소금의 양은 같으므로 $\frac{4}{100}x + \frac{6}{100}y = \frac{3}{100} \times 360$

두 식을 연립하여 풀면 x=54, y=144따라서 더 부은 물의 양은 3x=162(g)이다.

유형 **57** 농도에 대한 문제 - 소금물의 농도 구하기 • 55쪽 •

57-1 9 % **57-2** A 소금물 : 6 %, B 소금물 : 3 % **57-3** ⑤

57-1 A 소금물의 농도를 x %, B 소금물의 농도를 y %라 하면

$$\begin{cases} \frac{x}{100} \times 200 + \frac{y}{100} \times 300 = \frac{6}{100} \times 500 \\ \frac{x}{100} \times 300 + \frac{y}{100} \times 200 = \frac{7}{100} \times 500 \end{cases} \therefore x = 9, y = 4$$

따라서 A 소금물의 농도는 9%, B 소금물의 농도는 4%이다.

57-2 A 소금물의 농도를 x %, B 소금물의 농도를 y %라 하면

$$\left(\frac{x}{100} \times 300 + \frac{y}{100} \times 600 = \frac{4}{100} \times 900\right)$$

$$\frac{x}{100} \times 600 + \frac{y}{100} \times 300 = \frac{5}{100} \times 900$$

 $\therefore x=6, y=3$

따라서 A 소금물의 농도는 6%, B 소금물의 농도는 3%이다.

57-3 설탕물 A의 농도를 x %. 설탕물 B의 농도를 y %라 하면

$$\frac{x}{100} \times 400 + \frac{y}{100} \times 200 = \frac{5}{100} \times 600$$

$$\left(\frac{x}{100} \times 200 + \frac{y}{100} \times 400 = \frac{6}{100} \times 600\right)$$

 $\therefore x=4, y=7$

따라서 농도가 7 %인 설탕물 $100\,\mathrm{g}$ 에 들어 있는 설탕의 양은 $\frac{7}{100} \times 100 \! = \! 7(\mathrm{g})$ 이다.

유형 58 성분의 함량에 대한 문제

55쪽

58-1 ③ **58-2** 120 g

 $\therefore 5x = y \cdots \bigcirc$

- **58-3** 합금 A: 40 g, 합금 B: 200 g
- **58-1** 합금 A를 x kg, 합금 B를 y kg 섞었다고 하면 $\begin{cases} 0.6x + 0.4y = 6 \\ 0.3x + 0.5y = 3.9 \end{cases} \therefore x = 8, y = 3$
- 58-2 두 식품 A, B의 섭취량을 각각 x g, y g이라 하면 $\begin{cases} 0.15x + 0.2y = 30 \\ 0.2x + 0.1y = 20 \end{cases}$ 에서 $\begin{cases} 3x + 4y = 600 \\ 2x + y = 200 \end{cases}$ ∴ x = 40, y = 120따라서 B 식품을 120 g 섭취해야 한다.
- 58-3 합금 A를 xg, 합금 B를 yg이라 하면 A와 B를 섞어서 합금 240 g을 만드므로 x+y=240 ··· ①
 섞은 합금의 구리의 양은 (¹/₂x+⁴/₅y)g이고
 주석의 양은 (¹/₂x+¹/₅y)g이므로
 (¹/₂x+⁴/₅y): (¹/₂x+¹/₅y)=3:1에서 x=¹/₅y
 - ①, ⑥을 연립하여 풀면 x=40, y=200
 따라서 합금 A는 40 g, 합금 B는 200 g이 필요하다.

Ⅳ. 일차함수

1 일차함수와 그래프

유형 01 함수와 함숫값

● 56쪽 ●

- 01-1 (5)
- 01-2 4개
- 01-3 ⑤
- **01-4** -12
- **01-1** ⑤ x=10일 때, y=1, 2, 5, 10
 - → x의 값이 정해짐에 따라 y의 값이 오직 하나씩 대응되는 관계가 아니므로 함수가 아니다
- **01-2** ㄷ. x=5일 때, y=2, 3이므로 함수가 아니다. ㅂ. x=2일 때, y는 자연수 중 홀수이므로 함수가 아니다. 따라서 함수인 것은 ㄱ, ㄴ, ㄹ, ㅁ의 4개이다.
- **01-3** § $f(4)+f(-1) = -\frac{8}{3} + \left(-\frac{13}{3}\right) = -7$

유형 02 일차함수의 뜻

• 56쪽 ●

- 02-1 기, ㄷ, ㄹ
- **02-2** ①. ④
- **02-3** $a=0, b\neq -3$
- **02-1** $-\frac{2}{x}$, $\frac{4}{x}$, x^3+1 이 일차식이 아니므로 ㄴ, ㅁ, ㅂ은 일차함 수가 아니다.
- **02-2** ① $100 = 3x + y \Rightarrow y = 100 3x$
 - ② $y = \frac{100x}{200+x}$ → 일차함수가 아니다.
 - ③ $y = \frac{1}{2} \times x \times 2x = x^2$ 의 화함수가 아니다.
 - 4 y = 10x
 - ⑤ *y*는 *x*의 함수가 아니다.
- 02-3 y=x(ax+3)+bx+2에서 $y=ax^2+(3+b)x+2$ 일차함수는 y=(x에 대한 일차식)이어야 하므로 $a=0,\ b\neq -3$

유형 03 일차함수의 함숫값 구하기

• 56쪽 •

• 57쪽 •

03-1 -11 **03-2** ⓐ **03-3** \vdash , \equiv **03-4** -10 **03-5** -9

- 03-1 f(x)=3x+1 의사 f(-3)=-9+1=-8 f(2)=6+1=7∴ $\frac{1}{2}f(-3)-f(2)=-4-7=-11$
- **03-2** f(x) = ax + 3 에서 f(1) = a + 3 = 1 ∴ a = -2 f(x) = -2x + 3 에서 f(-2) = 4 + 3 = 7 ∴ b = 7∴ a + b = 5
- 03-4 f(3)=9에서 3a-6=9 $\therefore a=5$ g(-2)=5에서 -3+b=5 $\therefore b=8$ $f(x)=5x-6, g(x)=\frac{3}{2}x+8$ 이므로 f(-3)+g(2)=-21+11=-10
- 03-5 f(3) = -3a + b = -3 ··· ① f(-1) = a + b = 5 ··· ②
 ①, ②을 연립하여 풀면 a = 2, b = 3∴ f(x) = -2x + 3∴ $f(ab) = f(6) = -2 \times 6 + 3 = -9$

유형 **04** 일차함수의 그래프 위의 점을 알 때 미지수의 값 구하기

04-1 ⑤ **04-2** ③ **04-3** 4

04-1 y=3x+2에 x=-b, y=14를 대입하면 14=-3b+2 ∴ b=-4 y=3x+2에 x=a, y=-4를 대입하면 -4=3a+2 ∴ a=-2 ∴ ab=8

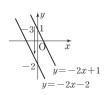
- 04-2 y=-4x+a에 $x=\frac{1}{2}$, y=3을 대입하면 3=-2+a $\therefore a=5$ y=-4x+5에 x=k, y=3k-2를 대입하면 3k-2=-4k+5 $\therefore k=1$
- **04-3** y=-3x+9에서 x=4, y=b를 대입하여 풀면 b=-3 y=ax+5에서 x=4, y=-3을 대입하여 풀면 a=-2 $\therefore a-2b=-2+6=4$

유형 05 일차함수의 그래프의 평행이동

• 58쪽 •

05-1 ④ **05-2** 제1사분면 **05-3** 0

- **05-1** $y=-\frac{1}{3}(x-6)$ 을 y축의 방향으로 2만큼 평행이동했으므로 $y=-\frac{1}{3}(x-6)+2=-\frac{1}{3}x+4$
- 05-2 오른쪽 그림에서 y=-2x+1의 그래프를 y축의 방향으로 -3만큼 평행이동한 그래프의 식은 y=-2x-2이고 이 그래프는 제 1사분면을 지나지 않는다.



|참고|y = -2x + 1의 그래프는 y = -2x의 그래프를 y축의 방향으로 1만큼 평행이동한 그래프와 일치한다.

05-3 y=3x+2a+1의 그래프를 y축의 방향으로 2만큼 평행이 동하면 y=3x+2a+3 두 함수 y=3x+2a+3, y=bx의 그래프는 일치하므로 $a=-\frac{3}{2}$, b=3 $\therefore 2a+b=0$

유형 06 평행이동한 그래프 위의 점

• 58쪽 •

06-1 2 **06-2** \neg . \vdash **06-3** $-4 \le n \le 6$

- **06-1** y=2x+a-2에 x=a, y=1을 대입하면 2a+a-2=1 $\therefore a=1$ y=2x-1에 x=b, y=5를 대입하면 5=2b-1 $\therefore b=3$ $\therefore b-a=2$
- **06-2** 일차함수 y=4x-1의 그래프를 y축의 방향으로 3만큼 평행이동한 그래프의 식은 y=4x+2

- ㄴ. 일차함수 y=4x+2에 $x=\frac{3}{2}$ 을 대입하면 y=8이므로 점 $\left(\frac{3}{2}, 8\right)$ 을 지난다.
- 르. 일차함수 y=4x+2의 그래프는 제1. 2. 3사분면을 지
- **06-3** 평행이동한 그래프의 식은 y = -3x + 1 + n
 - (i) y = -3x + 1 + n의 그래프가 점 A(-1, 0)을 지날 때. 0 = 3 + 1 + n : n = -4
 - (ii) y = -3x + 1 + n의 그래프가 점 B(2, 1)을 지날 때. 1 = -6 + 1 + n : n = 6
 - \therefore (i). (ii)에 의하여 n의 값의 범위는 $-4 \le n \le 6$

유형 07 일차함수의 그래프의 x절편, y절편

07-2 A(3, 0), B(0, -4) **07-3** $-\frac{5}{2}$ **07-1** ①

- **07-1** *x* 절편을 구하면
 - ① 5 ② -6 ③ $-\frac{1}{4}$ ④ $\frac{3}{2}$ ⑤ -3

- **07-2** y=0을 대입하면 $0=\frac{4}{2}x-4$ 이므로

x=3 ∴ *x*절편:3

x=0을 대입하면 y=-4∴ y절편: -4

A(3, 0) B(0, -4)

07-3 일차함수 $y = \frac{3}{5}x + \frac{1}{2}$ 의 그래프를 y축의 방향으로 -1만큼 평행이동한 그래프는 $y = \frac{3}{5}x - \frac{2}{3}$

함수 $y = \frac{3}{5}x - \frac{2}{3}$ 의 x절편은 $\frac{10}{9}$, y절편은 $-\frac{2}{3}$ 이므로

 $\frac{a}{b} = \frac{10}{9} \div \left(-\frac{2}{3}\right) = -\frac{5}{3}$

유형 **08** *x*절편, *y*절편을 이용하여 미지수의 값 구하기 • 59쪽 •

08-1 2 **08-2** -2 **08-3** 7 08-48

08-1 $y=-\frac{2}{3}x+(3b-2)$ 에 x=6, y=0을 대입하면 $0 = -\frac{2}{3} \times 6 + (3b - 2)$

3b-2=4, 3b=6

b=2

- **08-2** y=4x+8의 x절편, y절편은 각각 -2, 8이다.
 - (i) y = ax 1에 x = -2, y = 0을 대입하면

$$-2a-1=0$$
 $\therefore a=-\frac{1}{2}$

- (ii) y=3x+2b에 x=0. y=8을 대입하면 2b=8
- : $ab = -\frac{1}{2} \times 4 = -2$
- **08-3** y = -2x + a의 그래프를 y축의 방향으로 3만큼 평행이동 한 그래프의 함수의 식은 y = -2x + a + 3

함수 y = -2x + a + 3의 그래프의 y절편은 5이므로

a+3=5 $\therefore a=2$

y = -2x + 5의 x절편은 $\frac{5}{2}$ 이므로 $b = \frac{5}{2}$

 $\therefore a+2b=2+5=7$

08-4 y=mx+2의 그래프를 y축의 방향으로 n만큼 평행이동하 면 y=mx+2+n

함수 y=mx+2+n의 그래프의 y절편은 -4이므로

$$2+n=-4$$
 : $n=-6$

y=mx-4에서 x=-3. y=0을 대입하면

$$-3m-4=0$$
 : $m=-\frac{4}{3}$

 $\therefore mn = \left(-\frac{4}{3}\right) \times (-6) = 8$

유형 09 일차함수의 그래프의 기울기

59쪽

09-4 (4)

09-1 ②

09-2 ㄷ. ㄹ

09-3 2

09-1 (기울기)= $\frac{(y \circ 1)}{(y \circ 1)}$ 값이 증가량) $=\frac{-6}{2}$ = -3

따라서 x의 계수가 -3인 것은 2이다.

- **09-2** 함수 y=ax+10에 x=4, y=2를 대입하여 풀면 a=-2 $\neg y = -2x + 10$ 에 x = -1, y = 12를 대입하면 등식이 성 립하다
 - $L. (7) (27) = -2 = \frac{6}{-3}$
 - ㄷ. (기울기)= $-2 \neq \frac{8}{4-(-1)}$
 - 리. *x*절편은 5이다.
- **09-3** y=3x-4의 그래프의 y절편은 -4

 $y = -\frac{1}{2}x + 3$ 의 그래프의 x절편은 6

따라서 y=ax+b는 두 점 (0, -4), (6, 0)을 지나므로

$$a = \frac{0 - (-4)}{6 - 0} = \frac{2}{3}$$

09-4 (기술기)=
$$\frac{f(-1)-f(-2)}{-1-(-2)}$$
= $-a+b-(-2a+b)=a$

$$\therefore a = \frac{7}{4}$$

$$f(x) = \frac{7}{4}x + b$$
에서 $f(4) = 7 + b = 6$ 이므로 $b = -1$

$$\therefore f(x) = \frac{7}{4}x - 1$$

$$\therefore f(2) = \frac{7}{2} - 1 = \frac{5}{2}$$

유형 10 두 점을 지나는 일차함수의 그래프의 기울기 • 60쪽 •

10-1 2

10-2 ⑤

10-3 8

10-4 $-1 \le a \le 4$

10-1 (기술기)=
$$\frac{k-(-1)}{3-2}$$
= $k+1=3$

 $\therefore k=2$

10-2 y=ax+b의 그래프가 두 점 $\left(\frac{1}{3},0\right)$, (1,4)를 지나므로

$$a = \frac{4-0}{1-\frac{1}{3}} = 4 \times \frac{3}{2} = 6$$

y=cx+d의 그래프가 두 점 $\left(\frac{7}{3},0\right)$, (1,4)를 지나므로

$$c = \frac{4-0}{1-\frac{7}{3}} = 4 \times \left(-\frac{3}{4}\right) = -3$$

$$a-c=6-(-3)=9$$

10-3 (기울기)= $\frac{(y)$ 의 값의 증가량)}{(x의 값의 증가량)} $= \frac{(y - x) + (y - x)}{(x - x)}$ $= -\frac{2}{5}$ 이므로 $= \frac{2}{5}$ 이므로

$$=-\frac{2}{5}$$
이므로

$$-\frac{2}{5} = \frac{2}{3-k}$$
, $-2(3-k) = 10$ $\therefore k = 8$

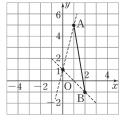
다른 풀이 그래프가 두 점 (5, 0), (0, 2)를 지나므로

$$(7) (27) = \frac{2-0}{0-5} = -\frac{2}{5} = \frac{2}{3-k} \qquad \therefore k=8$$

10-4 y=ax+1의 그래프가

선분 AB와 만나야하므로

(i) y = ax + 1에 x = 1, y = 5를 대입하면 5=a+1



(ii) y = ax + 1에 x = 2, y = -1을 대입하면 -1 = 2a + 1 $\therefore a = -1$

따라서 (i) (ii)에 의하여 a의 값의 범위는 -1 < a < 4

세 점이 한 직선 위에 있을 때 미지수의 값 구하기 • 61쪽 •

11-1 4 **11-2** 10 11-3 2개

11-1 두 점 A(1, -2), B(3, 2)를 지나는 직선의 기울기는

$$\frac{2-(-2)}{3-1} = 2$$

두 점 B(3, 2), C(4, k)를 지나는 직선의 기울기는

$$\frac{k-2}{4-3} = k-2$$

이때 두 직선의 기울기는 같아야 하므로 2=k-2

$$\therefore k=4$$

11-2 두 점 (-1, 0), (1, 3)을 지나는 직선의 기울기는

$$\frac{3-0}{1-(-1)} = \frac{3}{2}$$
 : $a = \frac{3}{2}$

두 점 (-1, 0). (m, 4)를 지나는 직선의 기울기는

$$\frac{4-0}{m-(-1)} = \frac{3}{2}$$
 $||A|| 3(m+1) = 8, 3m = 5$

$$\therefore m = \frac{5}{3}$$

$$\therefore 4am = 4 \times \frac{3}{2} \times \frac{5}{3} = 10$$

11-3 ㄱ. 세 점 (1, 2-k), (-1, -12), (3, 2k)는 한 직선 위

$$\frac{2-k-(-12)}{1-(-1)} = \frac{2k-(-12)}{3-(-1)}$$

$$\frac{14-k}{2} = \frac{2k+12}{4}$$
, $2(14-k) = 2k+12$ $\therefore k=4$

- L. 두 점 (-1, -12), (3, 8) 을 지나는 직선의 기울기는
- ㄷ, ㄹ. y=5x+b라 할 때, x=1. y=-2를 대입하여 풀면 b = -7

따라서 함수 y=5x-7의 그래프의 x절편은 $\frac{7}{5}$, y절편은 -7이다.

일차함수의 그래프 그리기

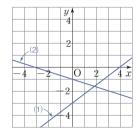
61쪽

12-1 (1) 풀이 참조 (2) 풀이 참조

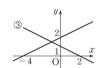
12-2 ⑤

12-3 ③

12-1



- (1) y절편이 -3이므로 점 (0, -3)에서 기울기 $\frac{3}{4}$ 에 의하여 점 (4, 0)을 표시하고 두 점을 직선으로 잇는다.
- (2) y절편이 -1이므로 점 (0, -1)에서 기울기 $-\frac{1}{2}$ 에 의 하여 점 (3, -2)를 표시하고 두 점을 직선으로 잇는다.
- **12-2** $y = \frac{2}{3}x 2$ 의 y절편은 -2이므로 점 (0, -2)를 지난다. 기울기가 $\frac{2}{3}$ 이므로 점 (0, -2)에서 x의 값은 3 증가하고 y의 값은 2 증가한 점 (3, 0)을 지나는 직선을 찾는다.
- **12-3** x절편, y절편을 이용하여 그래프를 그 려 보면 오른쪽 그림에서 ③이 주어진 그래프와 제2사분면에서 만난다.

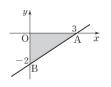


- ①, ⑤ → 제1사분면에서 만난다.
- ②. ④ ➡ 제3사분면에서 만난다.

일차함수의 그래프와 x축, y축으로 둘러싸인 도형의 넓이 • 62쪽 •

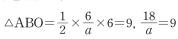
13-2 2 **13-3** a=8, $b=-\frac{16}{2}$

13-1 $y = \frac{2}{3}x - 2$ 의 x절편은 3, y절편은 -2이므로 그래프는 오른쪽 그림과 같다 따라서 구하는 넓이는 $\frac{1}{2} \times 3 \times |-2| = 3$



13-2 y=ax+6의 그래프의 x절편은 $-\frac{6}{a}$, y절편은 6이므로

 $\therefore a=2$

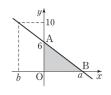


13-3 (삼각형 AOB의 넓이)

$$=\frac{1}{2}\times a\times 6=24$$

$$(7]$$
슬기)= $\frac{0-6}{8-0}$ = $\frac{10-6}{b-0}$

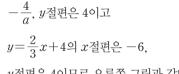
$$-\frac{3}{4} = \frac{4}{b}$$
 : $b = -\frac{16}{3}$

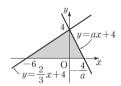


두 일차함수의 그래프와 x축 또는 y축 으로 둘러싸인 도형의 넓이

14-1 -2 **14-2** 14

14-1 *y*=*ax*+4의 그래프의 *x*절편은 $-\frac{4}{a}$, y절편은 4이고



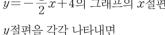


y절편은 4이므로 오른쪽 그림과 같다.

따라서
$$\frac{1}{2} \times \left\{ -\frac{4}{a} - (-6) \right\} \times 4 = 16$$
이므로 $a = -2$

14-2 두 일차함수 y = -x + 2.

 $y=-\frac{1}{2}x+4$ 의 그래프의 x절편,



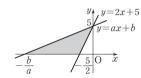
오른쪽 그림과 같으므로 구하는 넓이는

$$\frac{1}{2} \times 8 \times 4 - \frac{1}{2} \times 2 \times 2 = 14$$

14-3 (카에서 b=5

(나)에서 오른쪽 그림의 색칠한

부분의 넓이가 25이므로



$$\frac{1}{2} \times \left(\frac{b}{a} - \frac{5}{2}\right) \times 5 = 25$$

 $\frac{b}{a} = \frac{25}{2}, \frac{5}{a} = \frac{25}{2} (\because b = 5)$ $\therefore a = \frac{2}{5}$

$$\therefore ab = \frac{2}{5} \times 5 = 2$$

유형 **15** 일차함수 y=ax+b의 그래프의 성질 • 63쪽 •

15-1 ②, ⑤

15-2 ㄴ, ㄹ **15-3** 제2사분면

15-1 ② x절편은 $\frac{2}{3}$ 이다.

- ⑤ y=3x의 그래프를 y축의 방향으로 -2만큼 평행이동한 그래프이다.
- **15-2** b = y절편이므로 1이고 a = 7을기이다. 두 점 (-2, 0),
 - (0, 1)을 지나므로 기울기는 $\frac{1}{2}$ 이고, 기울기가 양수이므로 x의 값이 감소할 때 y의 값도 감소한다.
 - ㄷ. $y = \frac{1}{2}x + 1$ 에 x = 4를 대입하면 y = 3
- **15-3** (*x*절편)=2>0이고, (*y*절편)=-2<0이므로 이 직선은 제1, 3, 4사분면을 지난다. 따라서 지나지 않는 사분면은 제2사분면이다

유형 **16** 일차함수 y=ax+b의 그래프와 a,b의 부호 • 63쪽 •

- 16-1 기 리 16-2 제4사분면 16-3 ④
- 16-2 주어진 그래프에서 (기울기)<0, (y절편)<0이므로 ab<0, a-b<0 ∴ a<0, b>0 y=bx+b-a의 그래프는 (기울기)=b>0, (y절편)=b-a>0이므로 오른쪽 그림과 같다. 따라서 제4사부면을 지나지 않는다
- **16-3** ④ a < 1, b > 0일 때, (기울기)< 0, (y절편)< 0이므로 제1사부면을 지나지 않는다.

유형 17 일차함수의 평행과 일치

● 64쪽 ●

- **17-1** 나와 따, 라와 빠 **17-2** 4 **17-3** -15
- **17-4** 8 **17-5** y = -2x 5
- **17-1** 기울기가 같고, y절편이 다른 두 일차함수의 그래프는 서로 평행하다

- **17-2** 두 함수 y=5x+3+a-2a, y=bx+4의 그래프가 일치하 므로 b=5, -a+3=4에서 a=-1∴ a+b=4
- 17-3 함수 $y=-\frac{a}{4}x+\frac{1}{4}$ 의 그래프와 함수 y=9x-3의 그래프 가 서로 평행하므로 $-\frac{a}{4}=9$ 에서 a=-36 $y=9x+\frac{1}{4}$ 에 $x=k,\ y=4$ 를 대입하면 $4=9k+\frac{1}{4}$ 에서 $k=\frac{5}{12}$
 - $\therefore ak = -36 \times \frac{5}{12} = -15$
- - \bigcirc , \bigcirc 을 연립하여 풀면 m=5, n=3
 - $\therefore m+n=8$
- 17-5 D(a, -2a+3)이라 하면 A(a-4, -2a+3) 직선 AB의 기울기는 -2이므로 y=-2x+b라 놓고 x=a-4, y=-2a+3을 대입하면 -2a+3=-2(a-4)+b, -2a+3=-2a+8+b ∴ b=-5∴ y=-2x-5
 - |참고| 직선 CD와 x축과의 교점은 $\left(\frac{3}{2},0\right)$ 이다.

유형 **18** 기울기와 *y* 절편을 알 때

● 64쪽 ●

- **18-1** ③ **18-2** ④ **18-3** 1 **18-4** 6
- **18-1** (기울기)= $\frac{9-(-1)}{6-1}$ =2, (y절편)=-3 $\therefore y=2x-3$
- **18-2** (기울기)= $\frac{-6}{4}$ = $-\frac{3}{2}$, (y절편)=5 $\therefore y=-\frac{3}{2}x+5$
 - ④ $y = -\frac{3}{2}x + 5$ 에 x = 2를 대입하면 y = 2
 - ⑤ 일차함수 y=ax+b의 그래프는 |a|의 값이 클수록 y축에 가깝다.
- **18-3** (기울기)= $\frac{1-(-5)}{1-4}$ =-2, (y절편)=2
 - $\therefore y = -2x + 2$
 - 따라서 y = -2x + 2의 그래프의 x절편은 1이다.

18-4 함수 y = ax + b는 함수 $y = \frac{4}{3}x - 1$ 의 그래프와 평행하므로 $a = \frac{4}{3}$ 또, (0, -2)를 지나므로 b = -2 $y = \frac{4}{3}x - 2$ 에 x = k, y = k를 대입하면 $k = \frac{4}{3}k - 2$, 3k = 4k - 6 $\therefore k = 6$

유형 19 기울기와 한 점의 좌표를 알 때

• 65쪽 ●

19-1 4 **19-2** 18 **19-3** y = -3x + 15 **19-4** y = 5x - 4

- 19-1 $f(x) = \frac{1}{3}x + b$ 로 놓으면 $f(-4) = -\frac{4}{3} + b = \frac{2}{3}$ $\therefore b = 2$ $f(x) = \frac{1}{3}x + 2$ 이므로 f(3) = 3, f(-9) = -1 $\therefore f(3) - f(-9) = 3 - (-1) = 4$
- 19-2 주어진 그래프의 기울기는 $-\frac{3}{2}$ 이므로 $\frac{a}{2} = -\frac{3}{2} \qquad \therefore a = -3$ $y = -\frac{3}{2}x + 2$ 의 그래프와 y = bx + 8의 그래프의 x절편이 같으므로 $\frac{4}{3} = -\frac{8}{b} \qquad \therefore b = -6$ $\therefore ab = 18$
- **19-3** (기울기)= $\frac{-4-2}{3-1}$ =-3 y=-3x+b라 놓고 x=-2, y=21을 대입하면 $21=6+b \qquad \therefore b$ =15 ∴ y=-3x+15
- 19-4 y=3ax+1-3a에서 3a(x-1)+(1-y)=0이므로 상수 a의 값에 관계없이 항상 지나는 점 P의 좌표는 (1,1)이다. 구하는 식을 y=5x+b라 하면 점 P(1,1)을 지나므로 1=5+b $\therefore b=-4$ $\therefore y=5x-4$

유형 **20** 서로 다른 두 점의 좌표를 알 때

20-1 $y = -\frac{2}{3}x + \frac{5}{3}$ **20-2 5 20-3** \neg

● 65쪽 ●

- **20-1** 두 점 (-2,3), (4,-1)을 지나므로 $(7|27) = \frac{-1-3}{4-(-2)} = -\frac{2}{3}$ $y = -\frac{2}{3}x + b$ 에 x = 4, y = -1을 대입하면 $-1 = -\frac{2}{3} \times 4 + b$ 이므로 $b = \frac{5}{3}$ $\therefore y = -\frac{2}{3}x + \frac{5}{3}$
- **20-2** (기울기)= $\frac{6-3}{2-(-1)}$ =1이므로 y=x+b에 x=-1, y=3을 대입하면 3=-1+b $\therefore b=4$ y=x+4의 그래프와 y축 위에서 만나는 것은 y절편이 같은 5이다.
- **20-3** ㄱ. (기울기)= $\frac{3-(-3)}{6-(-3)}=\frac{2}{3}$ 이므로 $y=\frac{2}{3}x+b$ 에 $x=6,\ y=3$ 을 대입하여 풀면 b=-1 직선 $y=\frac{2}{3}x-1$ 을 y축의 방향으로 -4만큼 평행이동 한 직선은 $y=\frac{2}{3}x-5$ $\therefore a'=\frac{2}{3},\ b'=-5$

유형 $oldsymbol{21}$ x절편과 y절편을 알 때

• 66쪽 •

21-1 y=2x-6 **21-2** 3 **21-3** -49

- **21-1** y=-3x+9의 그래프와 x축 위에서 만나므로 (x절편)=3 $y=\frac{4}{5}x-6$ 의 그래프와 y축 위에서 만나므로 (y절편)=-6 따라서 일차함수의 식은 $y=-\frac{-6}{3}x-6$ 즉, y=2x-6
- **21-2** x절편은 $\frac{8}{3}$, y절편은 -8이므로 주어진 그래프의 식은 y=3x-8 x=k, y=k-2를 대입하면 k-2=3k-8 $\therefore k=3$
- **21-3** x절편이 a이면 y절편은 -a이므로 (7)울기)= $\frac{-a-0}{0-a}$ =1 y=x+b라 놓고 x=2, y=-5를 대입하면 -5=2+b에서 b=-7 따라서 y=x-7의 x절편은 7, y절편 -7이므로 a=7, b=-7 $\therefore ab=-49$

유형 22 온도에 대한 문제

• 66쪽 ●

22-1 (1) y=24-3x (2) 6 °C (3) 8 km **22-2** 30분 후 **22-3** 44

- **22-1** (2) x=6을 대입하면 $y=24-3\times 6=6$ $\therefore 6$ °C (3) y=0을 대입하면 0=24-3x이므로 x=8 $\therefore 8$ km
- 22-2 x분 후의 물의 온도를 y ℃라 하면 물의 온도는 1분에 ⁸/₅ ℃
 씩 내려가므로 y=90-⁸/₅x
 y=42일 때, 42=90-⁸/₅x에서 x=30
 ∴ 30분 후

유형 23 길이에 대한 문제

• 67쪽 •

23-1 75 cm **23-2** 1000초후 **23-3** 58

- 23-1 거짓말을 1번씩 할 때마다 늘어나는 길이는 $10 \,\mathrm{cm}$ 이다. x와 y 사이의 관계식은 y=10x+5 따라서 일주일 후의 피노키오의 코의 길이는 $10\times7+5=75\,\mathrm{(cm)}$ 이다.
- **23-2** 양초 A는 1분에 0.5 cm씩 줄어들고, 양초 B는 1분에 0.2 cm씩 줄어든다.

x분 후의 양초의 길이를 $y \, \mathrm{cm}$ 라 하면

 $A: y = -0.5x + 15(0 \le x \le 30)$

B: $y = -0.2x + 10(0 \le x \le 50)$

-0.5x+15=-0.2x+10에서 $x=\frac{50}{3}$

따라서 두 양초의 길이가 같게 되는 시간은 $\frac{50}{3}$ 분 후, 즉 1000초 후이다.

23-3 물체의 무게가 x g일 때, 용수철의 길이를 y cm라 하면 물체의 무게가 20 g에서 120 g으로 증가할 때, 용수철의 길이는 52-42=10 (cm) 증가했으므로 무게가 1 g씩 증가할 때마다 용수철의 길이는 $\frac{10}{100}=0.1$ (cm)씩 늘어난다. 또, y=0.1x+b에 x=20, y=42를 대입하여 풀면 b=40 따라서 물체의 무게가 180 g일 때, 용수철의 길이 $y=0.1x+40=0.1\times180+40=18+40=58$

유형 24 액체의 양에 대한 문제

• 67쪽 •

24-1 니 ㄹ 24-2 ③ 24-3 40분후

- **24-1** \neg . 1분마다 20 L씩 물이 흘러 나가므로 x분이 지나면 20x L의 물이 없어진다.
 - $\therefore y = 1000 20x$
 - y=1000-20x에 x=5를 대입하면 y=900
 - y=1000-20x에 y=500을 대입하면 x=25
 - 리 물통 속에 물이 없다는 것은 y=0이므로 x=50이다.
- **24-2** 난로를 피운 시간을 x시간, 남아 있는 석유의 양을 y L라 하면 $y\!=\!-0.5x\!+\!15(0\!\leq\!x\!\leq\!30)$

석유가 떨어지면 y=0이므로 0=-0.5x+15

x = 30

따라서 30÷6=5에서 5일 동안 난로를 피울 수 있다.

- 24-3 x분 후 물의 높이를 y cm라 하면 x=10일 때, y=40, x=20일 때, y=70이다. 각각을 y=ax+b에 대입하여 연립방정식을 풀면 a=3, b=10
 - ∴ *y*=130인 경우는 *x*=40일 때이다.

유형 25 거리, 속력, 시간에 대한 문제

● 68쪽 ●

25-1 y = 152 - 1.6x, 95분 **25-2** 420 m

25-3 (1) 450 m (2) y = 1550 - 100x (3) 8시 45분 30초

25-1 1분 동안 96÷60=1.6(km)를 가므로 *x*분 동안에는 1.6*x* km만큼 가다.

따라서 목적지까지의 거리가 152 km이므로 x분 후의 남은 거리는 (152-1.6x) km $\therefore y=152-1.6x$ 목적지까지 가는데 걸린 시간은 남은 거리가 0 km이므로 152-1.6x=0에서 x=95 따라서 95분이 걸린다.

- **25-2** A지점과 B지점 사이의 거리는 $3 \times 200 = 600 \text{ (m)}$ 이다. 케이블카의 이동 속력이 초속 3 m이므로 x초 동안 케이블 카가 이동한 거리는 3x m이다.
 - 즉, A 지점에서 출발한 지 x초 후에 B까지 남은 거리 y m 라 할 때, y=600-3x이다.

따라서 A 지점에서 출발한 지 1분 후에 도착한 지점으로부터 B 지점까지 남은 거리는 $600-3\times60=420(m)$ 이다.

- **25-3** (2) x분 후의 두 사람의 거리는 2000-450-45x-55x=1550-100x이므로 y=1550-100x
 - (3) 1550-100x=0에서 x=15.5이므로 두 사람이 만나는 시각은 8시 30분에서 15.5분 후인 8시 45분 30초이다.

유형 26 도형에 대한 문제

● 68쪽 ●

26-1
$$y=100-\frac{5}{2}x$$
 26-2 $y=120-12x(0< x<5)$ **26-3** $4\stackrel{>}{\sim}$

- **26-1** $\overline{\text{AP}}$ 의 길이는 x cm, $\overline{\text{PB}}$ 의 길이는 (20-x) cm이므로 $\triangle \text{CAP} = \frac{1}{2} \times x \times 5 = \frac{5}{2} x (\text{cm}^2)$ $\triangle \text{DBP} = \frac{1}{2} \times (20-x) \times 10 = 100 5x (\text{cm}^2)$ 따라서 x, y 사이의 관계식은 $y = \frac{5}{2} x + 100 5x \implies y = 100 \frac{5}{2} x$
- **26-2** x초 후에 $\overline{\mathrm{BP}}$ 의 길이는 $3x\,\mathrm{cm}$ 이므로 $\overline{\mathrm{PC}} = (15-3x)\,\mathrm{cm}$ (사각형 APCD의 넓이)= $\frac{1}{2} \times (15-3x+15) \times 8$ $\therefore y = 120-12x$ 또, 0 < 3x < 15에서 0 < x < 5 $\therefore y = 120-12x(0 < x < 5)$
- **26-3** x초 동안 점 A에서 점 P까지 2x cm만큼 갔으므로 삼각형 APC는 밑변이 2x, 높이가 10인 삼각형이다. 즉, y=10x 따라서 y=10x에 y=40을 대입하면 40=10x이므로 x=4

유형 **27** 여러 가지 함수의 활용 문제 69쪽 6 **27-1** y=18x+3000 **27-2** 8시 20분 **27-3** ②

27-4 9일 27-5 ⑤

- **27-1** 한 통화의 요금이 18원이므로 *x*통화의 요금은 18*x*원이다. ∴ *y*=18*x*+3000
- 27-2 시침은 1시간에 30°, 1분에 0.5°씩 간다. 분침은 1분에 6°씩 간다. 따라서 8시 x분일 때, y=(30×8+0.5x)−6x ∴ y=240−5.5x y=130을 대입하면 x=20이므로 8시 20분에 시침과 분침 이 130°를 이루다.
- **27-3** 주어진 그래프는 x절편이 20, y절편이 500인 직선이므로 $y=-\frac{500}{20}x+500$, 즉 $y=-25x+500(0\leq x\leq 20)$ x=15일 때, $y=-25\times 15+500=125$ 따라서 15분에 남은 물의 양은 125 L이다.
- 27-4 매일 6개씩 나누어 먹고 다시 10개씩 채워 넣으므로 상자 안에 들어 있는 귤의 수는 하루에 4개씩 늘어난다.
 x일 후에 상자 안에 남아 있는 귤의 수를 y개라 하면
 x, y 사이의 관계식은 y=4x+72
 주혁이가 채원이와 나누어 먹은 귤의 총 개수가 상자 안에 남아 있는 귤의 수의 절반이 된다고 하면 6x=1/2 (4x+72)
 6x=2x+36 ∴ x=9
 따라서 조건을 만족시키는 날의 수는 9일이다.
- **27-5** ① 기온이 올라갈수록 귀뚜라미의 울음소리의 간격이 빨라 진다.
 - ② 1분 동안 울음소리가 x회 늘어날 때, 온도는 $\frac{1}{4}x$ °F 올라간다.
 - ③ x와 y 사이의 관계식은 $y=\frac{1}{4}x+40$ 이다.
 - ④ 85= $\frac{1}{4}a+40$ 에서 a=180
 - $5 y = \frac{1}{4} \times 200 + 40 = 90$

2 일차함수와 일차방정식

유형 28 일차방정식과 일차함수의 그래프

• 70쪽 ●

28-1 ③, ④ **28-2** ④ **28-3** 6 **28-4** 제1사분면

28-1 3x-6y=9를 y에 관하여 풀면 $y=\frac{1}{2}x-\frac{3}{2}$

- ④ 4y-2x+7=0을 y에 관하여 풀면 $y=\frac{1}{2}x-\frac{7}{4}$ 에서 기울기가 $\frac{1}{2}$ 이므로 평행하다.
- **28-2** 2x-y-3=0을 y에 관하여 풀면 y=2x-3 x+3y-12=0을 y에 관하여 풀면 $y=-\frac{1}{3}x+4$ 따라서 y=ax+b의 그래프의 기울기는 2, y절편은 4이므로 a=2, b=4 $\therefore a+b=6$
- **28-3** 3x-5y-a=0을 y에 관하여 풀면 $y=\frac{3}{5}x-\frac{a}{5}$ y=bx-2의 그래프와 일치하므로 $-\frac{a}{5}=-2,\ b=\frac{3}{5}$ 에서 $a=10,\ b=\frac{3}{5}$ $\therefore ab=6$
- **28-4** ax-by+c=0에서 $y=\frac{a}{b}x+\frac{c}{b}$ (기울기)= $\frac{a}{b}<0$ ($\because ab<0$) $(y절편)=\frac{c}{b}<0$ ($\because ab<0$, ac>0이므로 bc<0) 따라서 제1사분면을 지나지 않는다.

유형 29 일차방정식의 그래프 위의 점

• 70쪽 •

29-1 나. ㄹ **29-2** 2 **29-3** -1 **29-4** 2

- **29-1** \neg . $4+5\neq 8$ \vdash . $2\times 4-5=3$ \vdash . $4-3\times 5\neq 11$ \rightleftharpoons . $6\times 5-5\times 4=10$
- **29-2** 5x+3y-13=0에 x=k, y=k-1을 대입하면 5k+3(k-1)-13=0 8k=16 ∴ k=2
- **29-3** 7x-y=25에 x=3 y=a를 대입하면 21-a=25 $\therefore a=-4$ 7x-y=25에 x=-a=4 y=b를 대입하면 28-b=25 $\therefore b=3$ $\therefore a+b=-1$
- **29-4** 2x+4y-12=0에 x=a, y=2를 대입하면 2a+8-12=0 ∴ a=2

유형 30 일차방정식의 그래프 위의 점이 주어질 때 미지수 구하기

30-1 ③ **30-2** ⑤ **30-3** ②

- **30-1** 3x+2ky=5에 x=3, y=1을 대입하면 9+2k=5에서 k=-2 즉, 3x-4y=5의 그래프 위의 점은 ③이다.
- **30-2** x+ay=6에 x=a, y=1을 대입하면 a+a=6 ∴ a=3 x+3y=6에 x=-2a=-6, y=b를 대입하면 -6+3b=6 ∴ b=4 ∴ ab=12
- 30-3 ax+by+8=0에 x=4, y=4를 대입하면 4a+4b+8=0 ··· ① ax+by+8=0에 x=-6, y=-1을 대입하면 -6a-b+8=0 ··· ① ① ②을 연립하여 풀면 a=2, b=-4 ∴ a+b=-2

유형 31 일차방정식의 그래프의 기울기와 y절편이 주어질 때 미지수 구하기

31-1 ① **31-2** 3 **31-3** 1

- 31-1 일차함수 $y=-\frac{2}{3}x+1$ 의 그래프와 평행하므로 기울기는 $-\frac{2}{3}$ 이고 y절편이 -1이므로 $y=-\frac{2}{3}x-1$ 따라서 $a=-\frac{2}{3}$, 3b=-1에서 $b=-\frac{1}{3}$ $\therefore a+b=-1$
- **31-2** 직선 l의 기울기는 $\frac{3}{1}$ =3이고 직선 m의 y절편은 -2이므로 ax+by-6=0의 그래프의 기울기는 3, y절편은 -2이다. 즉, $y=-\frac{a}{b}x+\frac{6}{b}$ 에서 $-\frac{a}{b}=3$, $\frac{6}{b}=-2$ 따라서 a=9, b=-3이므로 a+2b=3
- **31-3** (a+3)x+by-4=0에서 $y=-\frac{a+3}{b}x+\frac{4}{b}$ 3x-4y+1=0에서 $y=\frac{3}{4}x+\frac{1}{4}$ 과 평행하므로 $-\frac{a+3}{b}=\frac{3}{4}$ y절편은 -2이므로 $\frac{4}{b}=-2$

$$-\frac{a+3}{b} = \frac{3}{4}$$
, $\frac{4}{b} = -2$ 에서 $a = -\frac{3}{2}$, $b = -2$ 따라서 $b-2a=1$

유형 32 좌표축에 평행한 직선의 방정식

• 72쪽 •

32-1 1 **32-2** 3 **32-3** ③

32-1 그래프를 그리면 오른쪽 그림과 같다. 따라서 두 직선의 교점의 좌표는 (3, -2)이므로 a+b=3+(-2)=1

32-2 방정식 x=2의 그래프와 평행한 직선이므로 주어진 일차방 정식은 x=k(k는 상수)의 꼴이다.

그런데 점 (-2, 1)을 지나므로 x=-2이고 양변에 3을 곱하면 $3x+0 \times y+6=0$

즉,
$$-2a=3$$
, $b=0$ 이므로 $a=-\frac{3}{2}$, $b=0$

:
$$b-2a=0-2\times(-\frac{3}{2})=3$$

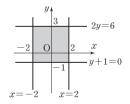
32-3 ax+by-c=0에서 b=0이므로 $x=\frac{c}{a}$

이때 $\frac{c}{a}$ <0이므로 $x=\frac{c}{a}$ 의 그래프는 ③과 같다.

유형 **33** 좌표축에 평행한 직선으로 둘러싸인 도형의 넓이 • 72쪽 •

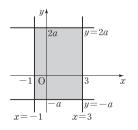
33-1 16 **33-2** 3 **33-3** 풀이 참조, 24

33-1 좌표평면에 내타내면 오른쪽 그 림과 같으므로 색칠한 부분인 사각형의 넓이는 4×4=16

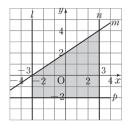


33-2 네 방정식 x=-1, x=3, y=2a, y=-a의 그래프를 그려 보면 오른쪽 그림과 같으므로 $\{3-(-1)\} \times \{2a-(-a)\}$ = 36 $4 \times 3a = 36$

 $\therefore a=3$



33-3



(사다리꼴의 넓이)= $\frac{1}{2} \times (2+6) \times 6 = 24$

유형 **34 연립방정식의 해와 그래프의 해의 교점** • 73쪽

34-1 4 **34-2** (-1, 2) **34-3** $\frac{1}{2} < a < 1$

- **34-1** 연립방정식의 해는 두 직선의 교점이다. $a=-1,\,b=-5$ $\therefore a-b=4$
- **34-2** 직선 l이 두 점 (-2, 0), (0, 4)를 지나므로

$$(7)$$
울기)= $\frac{4}{2}$ =2 $\therefore y=2x+4$

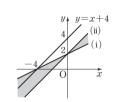
직선 m이 두 점 (1, 0), (0, 1)을 지나므로

(기울기)=
$$\frac{1}{-1}$$
= -1 $\therefore y$ = $-x+1$

연립방정식 $\left\{ egin{aligned} y=2x+4 \\ y=-x+1 \end{aligned}
ight.$ 의 해는 x=-1, y=2이므로

교점의 좌표는 (-1, 2)이다.

34-3 y=ax+2의 그래프의 y절편이2이므로 오른쪽 그림에서 두 직선의교점이 제3사분면 위에 있으려면



(i) y = ax + 2의 그래프가 점 (-4, 0)을 지날 때.

$$0 = -4a + 2$$
 : $a = \frac{1}{2}$

(ii) y=ax+2의 그래프가 y=x+4의 그래프와 평행할 때, a=1

따라서 (i), (ii)에 의하여 a의 값의 범위는 $\frac{1}{2}\!<\!a\!<\!1$

유형 **35** 두 직선의 교점의 좌표를 이용하여 미지수의 자 구하기

35-1 −4 **35-2 4 35-3** 2

35-1 두 그래프의 교점의 좌표가 (2, -3)이므로 연립방정식의 해는 x=2, y=-3

연립방정식
$$\begin{cases} ax-y=b\\ (b-2)x+2ay=0 \end{cases}$$
 에

x=2, y=-3을 대입하면

 $\therefore a-b=-4$

$$\begin{cases} 2a+3=b \\ 2(b-2)-6a=0 \end{cases} \therefore a=1, b=5$$

- **35-2** x=2, y=3이 두 직선의 교점이므로 x=2, y=3을 두 일 차방정식에 각각 대입하면 2-3+b=0, 2a-3+2=0이 므로 $a=\frac{1}{2}$, b=1 $\therefore ab=\frac{1}{2}$
- 35-3 2x-ay=8에 x=1, y=-2를 대입하면
 2+2a=8 ∴ a=3
 x+y=b에 x=1, y=-2를 대입하면
 1-2=b ∴ b=-1
 ax+by=-3에 a=3, b=-1을 대입하면
 3x-y=-3 ∴ y=3x+3
 직선 y=3x+3의 x절편은 -1, y절편은 3이므로
 x절편과 y절편의 합은 -1+3=2

유형 36 두 일차방정식의 그래프의 교점을 지나는 직선의 방정식

36-1
$$\neg$$
, \Box **36-2** $y=2x+4$ **36-3** $-\frac{1}{2} < a < \frac{5}{2}$

36-1 두 직선의 방정식 3x-y=2, -x+2y=1의 교점은 (1, 1)이다.

따라서 x축에 평행하고, 점 (1, 1)을 지나는 직선의 방정식 은 y=1이다.

- ㄴ. 직선 x=4와의 교점은 (4, 1)이다.
- ㄷ. 두 점 (1, 2), (3, 2)를 지나는 직선의 방정식은 y=2이므로 직선 y=1과 평행하다.
- **36-2** 연립방정식 $\begin{cases} 5x-y=2 \\ -x+y=6 \end{cases}$ 을 풀면 x=2, y=8

따라서 두 점 (2, 8), (-2, 0)을 지나므로

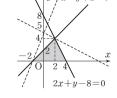
$$(7]$$
을기)= $\frac{8-0}{2-(-2)}$ =2

y=2x+b에 x=-2, y=0을 대입하여 풀면 b=4

 $\therefore y=2x+4$

36-3 두 직선 x-y+2=0.

2x+y-8=0의 교점의 좌표는 (2, 4)이고 직선 y=ax+5의 y절편은 5이므로 오른쪽 그림에서



(i) 점 (-2, 0)을 지날 때,

$$0 = -2a + 5 \qquad \therefore a = \frac{5}{2}$$

(ii) 점 (2, 4)를 지날 때.

$$4 = 2a + 5$$
 : $a = -\frac{1}{2}$

따라서 (i), (ii)에 의하여 a의 값의 범위는 $-\frac{1}{2}\!<\!a\!<\!\frac{5}{2}$

유형 37 한 점에서 만나는 세 직선

• 74쪽 ●

37-1 두 일차함수 y=2x+1, y=3x-2의 그래프의 교점의 x좌 표를 구하면 2x+1=3x-2에서 x=3,

y=3x-2에 x=3을 대입하면 y=7 \therefore (3,7) y=4x+k에 x=3, y=7을 대입하면

7 = 12 + k : k = -5

37-2 연립방정식 $\begin{cases} x+y-3=0 \\ 3x-2y+1=0 \end{cases}$ 을 풀면 $x=1,\ y=2$

2x+ay+5=0에 x=1, y=2를 대입하면

$$2+2a+5=0$$
 : $a=-\frac{7}{2}$

37-3 두 직선의 교점은 일차함수 y=2x의 그래프 위의 점이므로

연립방정식
$$\begin{cases} 3x+y-2m=0 \\ x-2y+m+1=0 \end{cases}$$
의 해를 $(n, 2n)$ 이라 하자.

(단, n은 상수)

$$\left\{ \begin{matrix} 3n+2n-2m=0 \\ n-4n+m+1=0 \end{matrix} \right. \rightarrow \left\{ \begin{matrix} -2m+5n=0 \cdots \bigcirc \\ m-3n=-1 \cdots \bigcirc \end{matrix} \right.$$

 \bigcirc . \bigcirc 을 연립하여 풀면 m=5. n=2

유형 38 연립방정식의 해의 개수와 미지수 구하기 • 75쪽 •

38-1 기범, 유진 **38-2** $-\frac{2}{3}$ **38-3** ④ **38-4** ①

38-5 -6 **38-6** $\frac{5}{12}$ **38-7** 5

- **38-1** $\begin{cases} 2x-y=3 \\ ax+y=b \end{cases}$ 에서 $a\neq -2$ 이면 두 직선의 교점은 1개이다. $a=-2,\,b\neq -3$ 이면 두 직선의 교점은 없다. $a=-2,\,b=-3$ 이면 두 직선의 교점은 무수히 많다.
- 38-2 두 직선의 방정식의 그래프의 교점이 없으므로 두 직선은 평행하다. 즉, 기울기는 같고, y절편은 달라야 하므로
 a/2 = 1/-3 ≠ -1/1
 ∴ a = -2/2
- 38-3 두 일차방정식의 그래프의 교점이 무수히 많으므로 두 직선은 일치한다.

$$\begin{cases} y = ax - 1 \\ y = 5x - b \end{cases} \quad \therefore a = 5, b = 1$$
$$\therefore a + b = 6$$

- **38-4** $\begin{cases} 2x-y=4 \\ -4x+2y=2a \end{cases}$ 가 해가 없으려면 $\frac{2}{-4} = \frac{-1}{2} \neq \frac{4}{2a}$
- 38-5 2x-ay+b=0에서 $y=\frac{2}{a}x+\frac{b}{a}$ 4x+8y-6=0에서 $y=-\frac{1}{2}x+\frac{3}{4}$ 주어진 연립방정식의 해는 없으므로 $\frac{2}{a}=-\frac{1}{2}, \ \frac{b}{a}\neq\frac{3}{4}$ $\therefore a=-4, b\neq -3$ 일차방정식 2x-ay+b=0, 즉 2x+4y+b=0의 그래프 가 점 (-3,2)를 지나므로 -6+8+b=0 $\therefore b=-2$ $\therefore a+b=-4+(-2)=-6$
- 38-6 두 그래프가 일치하므로 $\frac{2a}{5-a} = \frac{3b-1}{-b} = \frac{-6}{-1}$ $2a = 6(5-a), 2a = 30-6a \qquad \therefore a = \frac{15}{4}$ $3b-1 = -6b \qquad \therefore b = \frac{1}{9}$ $\therefore ab = \frac{15}{4} \times \frac{1}{9} = \frac{5}{12}$
- **38-7** 두 직선이 평행하거나 세 직선이 한 점에서 만나면 된다. (i) 두 직선 5x+y+8=0, ax+y+3=0이 평행할 때
 - (ii) 두 직선 x+4y-6=0, ax+y+3=0이 평행할 때, $a=\frac{1}{4}$
 - (iii) 세 직선이 한 점에서 만날 때

a=5

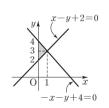
연립방정식
$$\begin{cases} 5x+y+8=0 \\ x+4y-6=0 \end{cases}$$
 을 풀면 $x=-2$ $y=2$ $ax+y+3=0$ 에 $(-2,2)$ 를 대입하여 풀면 $a=\frac{5}{2}$ \therefore (i), (ii), (iii)에 의하여 a 의 값 중 가장 큰 값은 5이다.

유형 39 직선으로 둘러싸인 도형의 넓이

76쪽

39-1
$$\frac{5}{2}$$
 39-2 1 **39-3** 17 **39-4** $a = \frac{1}{4}$, $b = \frac{15}{4}$

- **39-1** 두 직선 $y=\frac{5}{4}x$ 와 x=4의 교점의 좌표는 (4,5) 두 직선 $y=\frac{5}{4}x$ 와 $y=\frac{5}{2}$ 의 교점의 좌표는 $\left(2,\frac{5}{2}\right)$ 따라서 구하는 넓이는 $\frac{1}{2}\times(4-2)\times\left(5-\frac{5}{2}\right)=\frac{5}{2}$
- **39-2** 각 직선의 그래프를 그리고 교점을 찾으면 오른쪽 그림과 같다. 따라서 (넓이)= $\frac{1}{2} \times 2 \times 1 = 1$



- 39-3 다른 직선은 x절편과 y절편이 모두 6이므로 직선의 방정식은 x+y=6이고 점 P의 좌표는 $\left(\frac{3}{2},\frac{9}{2}\right)$ 이다. 따라서 삼각형 POA의 넓이는 $\frac{1}{2}\times 6\times \frac{9}{2}=\frac{27}{2}$ 따라서 $a=\frac{27}{2}$ 이므로 2a-10=17
- 39-4 두 직선 y=ax+2b, y=bx+2a의 교점의 x좌표를 구하면 ax+2b=bx+2a, (a-b)x=2(a-b) $\therefore x=2(\because a\neq b)$ 따라서 두 직선의 교점의 좌표는 (2,8)이다. y=ax+2b에 x=2, y=8을 대입하면 8=2a+2b $\therefore a+b=4$ ··· ①
 주어진 조건에 의하여 오른쪽 그림의 색칠한 부분의 넓이는 $\frac{1}{2} \times (2b-2a) \times 2=7$
 - \bigcirc , \bigcirc 을 연립하여 풀면 $a = \frac{1}{4}$, $b = \frac{15}{4}$

 $\therefore -2a+2b=7 \cdots \bigcirc$

정답및해설

유형 **40** 도형의 넓이를 이등분하는 직선의 방정식 • 76쪽 •

40-1
$$\frac{2}{3}$$
 40-2 (1) $y = \frac{3}{4}x$ (2) $y = -\frac{1}{2}x + 5$

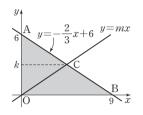
40-3
$$-\frac{2}{3}$$
 40-4 $y = \frac{5}{9}x + 3$

40-1
$$\triangle AOB = \frac{1}{2} \times 9 \times 6 = 27$$
이므로

직선
$$y = -\frac{2}{3}x + 6$$
과

직선 y=mx의 교점을 C라 하면

$$\triangle COB = \frac{27}{2}$$



따라서 점 \mathbb{C} 의 y좌표를 k라 하면 (단, k는 상수)

$$\triangle COB = \frac{1}{2} \times 9 \times k = \frac{27}{2}$$
 $\therefore k=3$

$$y=3$$
을 $y=-\frac{2}{3}x+6$ 에 대입하면

$$3 = -\frac{2}{3}x + 6$$
에서 $x = \frac{9}{2}$

즉, 직선 y=mx가 점 $\left(\frac{9}{2},3\right)$ 을 지나므로 $3=\frac{9}{2}m$

$$\therefore m = \frac{2}{3}$$

40-2 직사각형의 넓이를 이등분하는 직선은 오른쪽 그림과 같이

적 M(4, 3)을 지나는 직선이다.

(1) y = ax로 놓고 x = 4, y = 3을

대입하면
$$a=\frac{3}{4}$$

$$\therefore y = \frac{3}{4}x$$

 $(2) y = -\frac{1}{2} x + b$ 로 놓고 (4, 3)을 대입하여 풀면 b = 5

$$\therefore y = -\frac{1}{2}x + 5$$

40-3 점 E의 좌표를 (4, a)라 하면

(삼각형 ADE의 넓이)=
$$\frac{1}{2} \times 4 \times (8-a) = 16-2a$$

(사각형 AOCE의 넓이)= $\frac{1}{2}$ ×(a+8)×4=16+2a

$$=\frac{1}{2} \times \overline{\text{CF}} \times a$$

· CF-8

따라서 점 F의 좌표는 (12, 0)이므로 직선 AF의 기울기는

$$\frac{0\!-\!8}{12\!-\!0}\!=\!-\frac{2}{3}$$

40-4 직선 AB를 그래프로 하는 일차함수의 식은

$$y = -\frac{1}{3}x + 3$$
 :: D(0, 3)

E(3. k)라 하면

$$\triangle ABC = \frac{1}{2} \times (6-2) \times \{3-(-1)\} = 8$$
이므로

$$\triangle DBE = \frac{1}{2} \times (k-2) \times 3 = 4$$

$$\therefore k = \frac{14}{3}$$

따라서 $\mathrm{D}(0,\,3),\,\mathrm{E}\!\left(3,\,\frac{14}{3}\right)$ 이므로 구하는 일차함수의 식은

$$y = \frac{5}{9}x + 3$$

유형 **41** 두 그래프를 이용한 일차함수의 활용 • 77쪽 0

41-1 ¬, □ **41-2** 180 km

41-1 형 : 두 점 (0, 0), (30, 2)를 지나는 직선의 방정식은

 $y = \frac{1}{15} x$ 이므로 형이 10분 동안 이동한 거리는 $\frac{2}{2}$ km

동생 : 두 점 (15, 0), (30, 4)를 지나는 직선의 방정식은

$$y = \frac{4}{15}x - 4$$
 (단, $x \ge 15$)

$$\frac{1}{15}x = \frac{4}{15}x - 4$$
 $||x|| = 20$

따라서 동생과 형은 형이 출발한 지 20분 후에 만난다.

41-2 x km 달렸을 때 남아 있는 휘발유의 양을 y L라 하면

A 자동차에 남아 있는 휘발유의 양에 대한 식을 세우면

$$y = 23 - \frac{1}{10}x$$

B 자동차에 남아 있는 휘발유의 양에 대한 식을 세우면

$$y = 20 - \frac{1}{12}x$$

자동차에 남아 있는 휘발유의 양이 같아지는 때는

$$23 - \frac{1}{10}x = 20 - \frac{1}{12}x$$
, $\frac{1}{60}x = 3$ $\therefore x = 180$

따라서 두 자동차가 180 km를 달렸을 때, 남은 휘발유의 양은 같다.

78∼81쪽 •

			0 70 01 7
1 유리수와	순환소수	I	유리수와 순환소수
01 (1) 무한2	· - - - - - - - - - - - - - - - - - - -	수 02 ④	03 67
04 ①	05 ①, ③	06 20, 25	07 53
08 ②	09 4	10 ④	11 1.3
12 7	13 ⑤	14 ②	15 18개
16 ①	17 90	18 ①, ③	19 138
20 0.033	21 기, L, 1	=	

01 (1) 5÷12=0.41666… (무한소수) (2) 15÷24=0.625 (유한소수)

23 0 18

02 $\frac{13}{16}$ =0.8125 (유한소수) $\frac{4}{11}$ =0.3636…(무한소수)

🔼 서술형 문제

22 119

- **03** $\frac{26}{40} = \frac{13}{20} = \frac{13 \times 5}{2^2 \times 5 \times 5} = \frac{65}{10^2}$ ∴ a = 65, n = 2이므로 a + n = 67
- **05** ① $\frac{3}{2^2}$ (유한소수) ② $\frac{18}{5 \times 13}$ (무한소수) ③ $\frac{2}{5}$ (유한소수) ④ $\frac{43}{2^4 \times 3}$ (무한소수)
 - $(5) \frac{1}{2^2 \times 3 \times 5} (무한소수)$
- 06 20=2²×5, 21=3×7, 22=2×11 24=2³×3, 25=5², 26=2×13, 27=3³ 28=2²×7, 30=2×3×5 따라서 가능한 a의 값은 20, 25이다.
- **07** 672=2⁵×3×7에서 A=21 $\frac{1}{672} = \frac{1}{2^5 \times 3 \times 7} \times 21 = \frac{1}{2^5}$ 에서 B=2⁵=32
 ∴ A + B=21+32=53
- **08** ① 0.2333··· ⇒ 3 ③ 0.3727272··· ⇒ 72 ④ 0.1545454··· ⇒ 54 ⑤ 0.1345345345··· ⇒ 345

- $09 \ x = 0.83535 \cdots$ $1000x = 835.3535 \cdots$ $-) \ 10x = 8.3535 \cdots$ 990x = 827
- **10** 0.05 $\dot{6}$ = $\frac{56-5}{900}$ = $\frac{51}{900}$ = $\frac{17}{300}$ ∴ 300-17=283
- **11** $a=24\div18=\frac{24}{18}=1.3$ 이므로 가로의 길이는 세로의 길이의 1.3배이다.
- **12** 0.3927의 순환마디는 927이고 1000-1=3×333이므로 소수점 아래 1000번째 자리의 숫자는 순환마디의 마지막 자리의 숫자와 같으므로 7이다.
- **13** ① $0.31 < \frac{31}{90} = 0.3444 \cdots$ ② $0.2444 \cdots > 0.2424 \cdots$ ③ $1.2\dot{9} = 1.3$ ④ $2.\dot{3} = \frac{23-2}{9} = \frac{7}{3} < \frac{8}{3}$ ⑤ $1.2111 \cdots < 1.22$
- **14** $\frac{3}{11} < \frac{x}{9} < \frac{8}{13}, \frac{27}{11} < x < \frac{72}{13}$ $2.4 \dots < x < 5.5 \dots$ $\therefore x = 3, 4, 5$
- **15** 550=2×5²×11이므로 유한소수로 나타낼 수 있으려면 분 모의 소인수 11이 약분되어야 한다. 따라서 구하는 개수는 100에서 500까지의 짝수 중 11의 배수의 개수인 18개이다.
- **16** $0.\dot{0}\dot{1} \times a = 0.\dot{4}\dot{8}, \frac{1}{99} \times a = \frac{48}{99} \quad \therefore a = 48$ $b \times 0.0\dot{1} = 0.5\dot{1}, b \times \frac{1}{90} = \frac{51 5}{90} = \frac{46}{90} \quad \therefore b = 46$ $\therefore a b = 48 46 = 2$
- **17** 어떤 자연수를 A라 하면 $2.15 \times A 2.15 \times A = -0.5$ $\frac{43}{20}A \frac{97}{45}A = -\frac{1}{2}$ 양변에 180을 곱하면 387A 388A = -90 ∴ A = 90
- **18** $\frac{x}{72} = \frac{x}{2^3 \times 3^2} = \frac{1}{y}$ 에서 x는 9의 배수이어야 한다. x = 9일 때, y = 8, x = 18일 때, y = 4 따라서 x + y의 값은 17 또는 22이다.

19 $3.8\dot{3} = \frac{383 - 38}{90} = \frac{23}{6}$

이때 $\frac{23}{6}$ 에 $6 \times 23 = 138$ 을 곱하면 23의 제곱이 되므로 곱해 야 하는 가장 작은 자연수는 138이다.

20 가람: $0.03\dot{6} = \frac{36-3}{900} = \frac{11}{300}$

가람이는 부모를 잘못 보았으므로 처음 분수의 부자는 11이다.

주현 :
$$0.\dot{0}6\dot{0} = \frac{60}{999} = \frac{20}{333}$$

주현이는 분자를 잘못 보았으므로 처음 분수의 분모는 333이다. 따라서 기약분수를 순환소수로 바르게 나타내면

$$\frac{11}{333} = 0.033$$

- 21 기 유한소수는 모두 유리수이다
 - $2\pi = \frac{1}{2}$ 는 유리수가 아니지만 3.5는 유리수이다
 - 다. 정수가 아닌 유리수에는 순화소수가 되는 것도 있다.
- **22** $\frac{7}{170} \times A$ 가 유한소수가 되려면 기약분수로 나타냈을 때, 분모의 소인수가 2나 5뿐이어야 하므로

$$\frac{13}{182} \times A$$
가 유한소수가 되려면 $\frac{13}{182} = \frac{1}{2 \times 7}$ 에서

A는 17과 7의 공배수 중 가장 작은 수이다.

$$\therefore A = 17 \times 7 = 119 \qquad \cdots$$

채점 요소	배점
$lacksquare$ $rac{7}{170} imes A$ 가 유한소수가 되도록 하는 A 의 조건 구하기	3점
$m{0}$ $\frac{13}{182} imes A$ 가 유한소수가 되도록 하는 A 의 조건 구하기	3점
③ <i>A</i> 의 값 구하기	2점
총점	8점

23
$$0.\dot{x}\dot{y} = \frac{10x+y}{99}, 0.\dot{y}\dot{x} = \frac{10y+x}{99}$$
이므로 … **①**

 $0.\dot{x}\dot{y} + 0.\dot{y}\dot{x} = 0.4$ 에서

$$\frac{10x+y}{99} + \frac{10y+x}{99} = \frac{4}{9}$$

10x+y+10y+x=44

 $\therefore x+y=4$

그런데. x>y>0이므로 x=3, y=1

$$= 0.\dot{x}\dot{y} = 0.31.0.\dot{y}\dot{x} = 0.13$$
 ...

$$0.3\dot{1} - 0.\dot{1}\dot{3} = \frac{31 - 13}{99} = \frac{18}{99} = 0.\dot{1}\dot{8} \qquad \cdots$$

채점 요소	배점
$lackbox{0.}{}$ $0.xy$, $0.yx$ 를 분수로 나타내기	3점
$m{O}$ 조건을 만족시키는 x, y 의 값 각각 구하기	3점
$oldsymbol{0}$ $0.xy-0.yx$ 의 값을 순환소수로 나타내기	2점
총점	8점

82~85쪽

Ⅰ 유리수와 순환소수

01 ③ **02** (4) **03** ② 04 (2)

05 ③ **06** (4) **07** (4) 08 (5)

09 ③ 10 명수 **11** ③ **12** ③ **13** ① **14** ⑤ **15** ④ **16** (1)

17 91 **18** ④ **19** 47 **20** 4

21 네 자리 수

🔼 서술형 문제

22 3개 **23** 4

- **01** $\frac{13}{50}$, $0.\dot{13}$, 0, -0.051의 4개이다.
- 02 연주가 끝없이 계속되려면 무한소수이어야 한다.

① $\frac{3}{16} = 0.1875$ ② $\frac{6}{24} = 0.25$ ③ $\frac{9}{45} = 0.2$

 $4\frac{12}{42} = 0.285714$ $5\frac{18}{125} = 0.144$

03
$$\frac{27}{225} = \frac{3}{25} = \frac{3 \times 2^2}{5^2 \times 2^2} = \frac{12}{10^2}$$

∴ *a*=12. *b*=2이므로 *a*+*b*=14

04
$$\neg \cdot \frac{16}{3 \times 5^2} (\stackrel{\square}{\tau})$$
 $\vdash \cdot \frac{3}{2 \times 5} (\stackrel{\diamond}{\pi})$ $\vdash \cdot \frac{19}{2^6} (\stackrel{\diamond}{\pi})$

 $\exists \cdot \frac{1}{2^4 \times 3} \left(\stackrel{\square}{\top} \right)$ $\Box \cdot \frac{41}{5^3} \left(\stackrel{\lozenge}{\Pi} \right)$

05
$$\frac{42}{2^3 \times 5^2 \times a} = \frac{21}{2^2 \times 5^2 \times a}$$

③
$$a=18$$
일 때, $\frac{21}{2^2 \times 5^2 \times 18} = \frac{7}{2^3 \times 3 \times 5^2}$ (무한소수)

06
$$4 \frac{66}{2^2 \times 3^2 \times 5} \times \frac{3}{11} = \frac{2 \times 3 \times 11}{2^2 \times 3^2 \times 5} \times \frac{3}{11} = \frac{1}{2 \times 5}$$

- **07** ① 1.4 $\dot{2}\dot{1}$ ② 0. $\dot{4}\dot{6}$ ③ 5.02 $\dot{4}\dot{7}$ ⑤ 0.24 $\dot{8}$

08 ①
$$0.\dot{4}\dot{2} = \frac{42}{99}$$
 ② $0.56\dot{4} = \frac{564 - 56}{900}$

$$20.56\dot{4} = \frac{564 - 56}{900}$$

$$310.0\dot{5}=10+\frac{5}{90}$$
 $40.\dot{1}2\dot{6}=\frac{126}{999}$

09
$$\frac{1}{5}(0.1+0.001+0.00001+\cdots)$$

= $\frac{1}{5} \times 0.\dot{10} = \frac{1}{5} \times \frac{10}{99} = \frac{2}{99} = 0.\dot{02}$

- **10** 명수: 180=6×30이므로 소수점 아래 180번째 자리의 숫자 는 순화마디의 마지막 숫자와 같으므로 1이다.
- **11** $3.1\dot{6} = \frac{316 31}{90} = \frac{285}{90} = \frac{19}{6}$

따라서 곱할 수 있는 자연수는 6의 배수이므로 가장 작은 자 연수는 6이다.

②
$$\frac{1}{2}$$
 = 0.5 > 0.4888...

$$31.4555\dots < \frac{14}{9} = 1.55\dots$$
 $3.46\underline{4}646\dots < 3.46\underline{6}6\dots$

⑤ 3.111
$$\cdots < \pi = 3.14\cdots$$

13 $\frac{1}{7} = \frac{5}{35}$, $\frac{4}{5} = \frac{28}{35}$ 이므로 $\frac{5}{35}$ 와 $\frac{28}{35}$ 사이의 분수 중 분모가 35인 수는 $\frac{6}{35}$, $\frac{7}{35}$, ..., $\frac{27}{35}$ 이다.

35=5×7이므로 유한소수가 되려면 분자는 7의 배수이어야

따라서 구하는 분수는 $\frac{7}{35}$, $\frac{14}{35}$, $\frac{21}{35}$ 이므로 3개이다.

- **14** $\frac{63}{2^2 \times 3 \times 5 \times a} = \frac{3 \times 7}{2^2 \times 5 \times a}$ 에서 기약분수의 분모의 소인수 에 2와 5 이외의 다른 수가 있으면 순환소수가 되므로 a의 값 이 될 수 있는 수는 9, 11, 13, 17, 18, 19이다.
 - M=19 m=9이므로 M+m=19+9=28

15
$$0.0\dot{6} = \frac{6}{90}, 4.\dot{6} = \frac{46-4}{9}$$

$$\frac{6}{90} \times a = \frac{42}{9}$$
, $6a = 420$

$$\therefore a=70$$

16
$$\frac{105-10}{90} \times a = \left(\frac{3}{9}\right)^2 \times b$$

$$\frac{95}{90} \times a = \frac{1}{9} \times b$$

$$\therefore \frac{a}{b} = \frac{1}{9} \times \frac{90}{95} = \frac{2}{19}$$

이때 2와 19는 서로소이므로 a=2. b=19

$$\therefore a+b=21$$

- **17** $\frac{9}{130} = \frac{9}{2 \times 5 \times 13}, \frac{11}{154} = \frac{1}{2 \times 7}$ 따라서 N은 13과 7의 곳배수 중 가장 작은 수이므로 $N = 7 \times 13 = 91$
- **18** ① π 는 무한소수이지만 유리수는 아니다 ④ $0 = \frac{0}{1} = \frac{0}{2} = \cdots$ 으로 나타낼 수 있다.
- **19** 지연: $1.0\dot{45} = \frac{1045 10}{990} = \frac{23}{22}$ 지연이는 분모를 잘못 보았으므로 처음 분수의 분자는 23이다. 현석: $1.2083 = \frac{12083 - 1208}{9000} = \frac{10875}{9000} = \frac{29}{24}$ 현석이는 분자를 잘못 보았으므로 처음 분수의 분모는 24이다. 따라서 처음의 기약분수는 $\frac{23}{24}$ 이므로 23+24=47
- **20** 49 = 0.445이므로 $P_1=4$, $P_2=4$, $P_3=5$, $P_4=4$, $P_5=5$, ... $(P_1+P_2+P_3+\cdots+P_{20}+P_{21})\div 9$ $= \{4 + (4 + 5) \times 10\} \div 9 = 10 \cdots 4$ 따라서 9로 나는 나머지는 4이다.
- **21** 9999. $\dot{9} = \frac{99999 9999}{9} = \frac{90000}{9} = 10000$ $x \times (10000 - 1) = 9999x = 9999 \times \frac{19}{33} = 5757$
- **22** $\frac{a}{700} = \frac{a}{2^2 \times 5^2 \times 7}$ 를 소수로 나타내면 유한소수가 되므로 a는 7의 배수이다.

a는 7과 3의 최소공배수인 21의 배수이고 두 자리의 자연수 이다

따라서 a는 될 수 있는 수는 21, 42, 63, 84이다.

 $\frac{a}{2^2 \times 5^2 \times 7} = \frac{3}{b}$ 에 a의 값을 대입하여 순서쌍 (a, b)를 구하면 (21, 100), (42, 50), (84, 25)

채점 요소	배점
1 a가 될 수 있는 수의 조건 구하기	4점
② a가 될 수 있는 수 구하기	2점
❸ 순서쌍 (a, b)의 개수 구하기	2점
	8점

... 🚯

- **23** (i) $\frac{2}{3} < 0$. $\dot{a} < \frac{10}{9}$ $||A|| \frac{2}{3} < \frac{a}{9} < \frac{10}{9}$, $\frac{6}{9} < \frac{a}{9} < \frac{10}{9}$
 - → 조건을 만족시키는 a의 값은 7, 8, 9이다. ... ①
 - $\text{(ii)}\ 0.\dot{4}\!<\!0.\dot{b}\!<\!1$ 에서 $\frac{4}{9}\!<\!\frac{b}{9}\!<\!\frac{9}{9}$
 - → 조건을 만족시키는 *b*의 값은 5, 6, 7, 8이다. ... **②** 따라서 (i), (ii)에서 *a*의 값 중 가장 큰 값은 9, *b*의 값 중 가장 작은 값은 5이므로 9−5=4 ... **③**

채점 요소	배점
$lue{f 0}$ 조건을 만족시키는 a 의 값 구하기	3점
$m{0}$ 조건을 만족시키는 b 의 값 구하기	3점
$oldsymbol{0}$ $a-b$ 의 최댓값 구하기	2점
총점	8점

• 86~88쪽 •

1 단항식의	의 계산		Ⅱ 식의계산
01 ②	02 ③	03 4	04 15
05 ⑤	06 11	07 ③	08 3
09 5	10 14	11 ⑤	12 ③
13 ⑤	14 ③	15 13	16 12번
🙋 서술형 문	! 제		
17 6000	18 15		

- **01** $a^3 \times b^4 \times a^4 \times b^5 = a^{3+4} \times b^{4+5} = a^7 b^9$
- **02** 2a-6=0에서 a=3 $(-1)^3 \times (-1)^4 \times (-1)^6 = -1 \times 1 \times 1 = -1$
- **03** $(a^5)^3 \div (a^8 \div a^5)^4 = a^{15} \div (a^3)^4 = a^{15} \div a^{12} = a^3$ ① a^4 ② a^{12} ③ a^5 ④ a^3 ⑤ a^6
- **04** $\left(\frac{by^2}{x^a}\right)^5 = \frac{b^5y^{10}}{x^{5a}} = \frac{32y^c}{x^{15}}$ oilki $5a = 15, b^5 = 32 = 2^5, c = 10$ $\therefore a = 3, b = 2, c = 10$ $\therefore a + b + c = 3 + 2 + 10 = 15$
- **05** (5) $(2^n)^n = 2^{n^2}$
- **06** $18 \times 90 \times 375$ = $(2 \times 3^2) \times (2 \times 3^2 \times 5) \times (3 \times 5^3)$ = $2^2 \times 3^5 \times 5^4$ $\therefore x = 2, y = 5, z = 4$ 이므로 x + y + z = 2 + 5 + 4 = 11

- **07** $a^5 + a^5 + a^5 + a^5 + a^5 = 5a^5$ $5a^5 = 5^6$ of |A| $a^5 = 5^5$ $\therefore a = 5$ $\therefore 3a - 1 = 14$
- **08** (좌변)= 2^{3x+8} ÷ $8^x = 2^{3x+8}$ ÷ $2^{3x} = 2^8$ (우변)= $4^x + 4^x + 4^x + 4^x = 4 \times 4^x = 2^2 \times 2^{2x} = 2^{2x+2}$ $2^{2x+2} = 2^8$ 에서 2x + 2 = 8 ∴ x = 3
- **09** $3^{x+1} = 3^x \times 3 = a$ $\exists a$ $3^x = \frac{1}{3}a$ $27^x = (3^3)^x = (3^x)^3 = \left(\frac{1}{3}a\right)^3 = \frac{a^3}{27}$
- **10** $2^{11} \times (5^3)^5 = 2^{11} \times 5^{15} = (2^{11} \times 5^{11}) \times 5^4 = 625 \times 10^{11}$ 따라서 14자리의 자연수이므로 n=14
- 11 $\frac{1}{2} \times \frac{3}{4} y \times (\frac{1}{31} \circ |) = 12xy^4$ $(\frac{1}{31} \circ |) = 12xy^4 \times 2 \times \frac{4}{3y} = 32xy^3$
- **12** $(3) 7x^2y^2 \div (-xy)^4 = 7x^2y^2 \times \frac{1}{x^4y^4} = \frac{7}{x^2y^2}$
- **13** (주어진 식)= $ab^4\div \frac{1}{4}a^6b^2\times \left(-\frac{1}{27}a^6b^3\right)$ $=ab^4\times \frac{4}{a^6b^2}\times \left(-\frac{1}{27}a^6b^3\right)=-\frac{4}{27}ab^5$ 따라서 $a=-1,\ b=3\frac{9}{2}-\frac{4}{27}ab^5$ 에 대입하면 $-\frac{4}{3^3}\times (-1)\times 3^5=36$
- **14** $\frac{27}{8}x^3y^3 \times \square \times \frac{4x}{5y^3} = \frac{9x}{5y^3}$ $\frac{27}{10}x^4 \times \square = \frac{9x}{5y^3}$ $\therefore \square = \frac{9x}{5y^3} \times \frac{10}{27x^4} = \frac{2}{3x^3y^3}$
- **15** $(-2)^a x^{3a} y^a \div 4x^b y \times 2x^5 y^2 = \frac{(-2)^a}{2} x^{3a-b+5} y^{a+1} = cx^2 y^3$ $\frac{(-2)^a}{2} = c \qquad \cdots \bigcirc$ $3a-b+5=2 \qquad \cdots \bigcirc$ $a+1=3 \qquad \cdots \bigcirc$ $\bigcirc a+1=3 \qquad$
- **16** (물통 A의 부피)= $\pi \times a^2 \times 2b = 2\pi a^2 b$ (물통 B의 부피)= $\frac{1}{3}\pi \times \left(\frac{a}{2}\right)^2 \times 2b = \frac{1}{6}\pi a^2 b$

 $2\pi a^2b\div rac{1}{6}\pi a^2b$ =12이므로 12번 만에 물통 A가 가득 찬다.

17 원소 A의 처음의 양은 $\frac{1}{2}$ g이고 1500년마다 그 양이 절반씩 줄어든다. 따라서 반감기는 1500년이므로 x=1500 ··· **①** 이 암석에 포함된 워소 A의 양은

1500년, (1500×2)년, (1500×3)년, (1500×4)년, …, (1500×n)년 후에는

각각
$$\left(\frac{1}{2}\right)^2$$
 g, $\left(\frac{1}{2}\right)^3$ g, $\left(\frac{1}{2}\right)^4$ g, ..., $\left(\frac{1}{2}\right)^{n+1}$ g이다.

따라서 1500×5=7500(년) 후이다. ∴ *y*=7500 ··· **2**

∴
$$y - x = 6000$$
 ... 3

채점 요소	배점
lacktriangle 반감기의 개념을 이해하고 x 의 값 구하기	2점
② 지수법칙을 이용하여 y 의 값 구하기	6점
③ <i>y</i> − <i>x</i> 의 값 구하기	2점
총점	10점

18
$$X = \frac{9y^5}{8x^2} \div \frac{3}{2}y^3 \times 4x^3y^2 = \frac{9y^5}{8x^2} \times \frac{2}{3y^3} \times 4x^3y^2 = 3xy^4 \cdots$$

$$3xy^4 \times 4x^3y^2 \div \frac{3}{2}y^3 = 3xy^4 \times 4x^3y^2 \times \frac{2}{3y^3} = 8x^4y^3 \quad \cdots$$
 2

$$8x^4y^3 = ax^by^c$$
 에서 $a = 8, b = 4, c = 3$

$$a+b+c=8+4+3=15$$

채점 요소	배점
$lue{1}$ 어떤 식 X 구하기	3점
바르게 계산한 결과 구하기	4점
③ a+b+c의 값 구하기	3점
ᄎᄭ	1074

• 89∼91쪽 •

... ❸

2 다항식의	의 계산		Ⅱ 식의계산
01 ②	02 ④	03 ⑤	04 4
05 ②	06 10	07 4	
08 $3x^2 - 7$	7xy-13y	09 4	10 ②
11 $-6xy$	y + 8x + 4y	12 ①	13 4
14 ④	15 ⑤	16 $-\frac{7}{4}$	
🛭 서술형 문	문제		
17 4 <i>a</i> + <i>b</i>	18 16		

01 (주어진 식)=
$$\frac{6(x-2y)}{12} + \frac{4(2x-3y)}{12} - \frac{3(3x-4y)}{12}$$
$$=\frac{6x-12y+8x-12y-9x+12y}{12}$$
$$=\frac{5x-12y}{12} = \frac{5}{12}x-y$$

02
$$2A+3B=2(x+2y)+3(-2x+y)$$

= $2x+4y-6x+3y$
= $-4x+7y$

- **03** ① 삼차식 ② 삼차식 ③ 일차식 ④ 일차식 ⑤ 이차식
- **04** $(5x^2-3x+2)-(-x^2+8x-7)$ =5 $x^2-3x+2+x^2-8x+7$ =6 $x^2-11x+9$ ∴ a+b+c=6+(-11)+9=4
- **05** $4x^2-2x+3+(ax^2+x+1)=(4+a)x^2-x+4$ $(4+a)x^2-x+4=2x^2+bx+4$ 4+a=2, -1=b A=-2, b=-1∴ a+b=-3
- **○6** (주어진 식)= $10x^2 \{4x 5 (1 + 4x 6x^2)\}$ = $10x^2 - (6x^2 - 6) = 4x^2 + 6$ ∴ a = 4, b = 6이므로 4 + 6 = 10
- **07** 어떤 식을 *A*라 하면 $A (9x^2 5x + 1) = -2x^2 + x 4$ $A = -2x^2 + x 4 + (9x^2 5x + 1) = 7x^2 4x 3$ $∴ 7x^2 4x 3 + (9x^2 5x + 1) = 16x^2 9x 2$
- **08** $2x^2 + 3xy 7y \Box = -x^2 + 10xy + 6y$ $\therefore \Box = 2x^2 + 3xy - 7y - (-x^2 + 10xy + 6y)$ $= 3x^2 - 7xy - 13y$
- **O9** (4) $(6x^2y^2 12xy) \div 4xy = \frac{3}{2}xy 3$
- **10** (주어진 식)=(-8x²+10y)-(15y-2)=-8x²-5y+2
- **11** (세로의 길이)= $\left(\frac{3}{4}x^2y^2 x^2y \frac{1}{2}xy^2\right) \times \left(-\frac{8}{xy}\right)$ = -6xy + 8x + 4y
- **12** (주어진 식)=b+a-(b-a)=2a
- 13 어떤 다항식을 A라 하면 $A = -4x(x^2 x 1) 2x^2 + 3x 1$ $= -4x^3 + 4x^2 + 4x 2x^2 + 3x 1$ $= -4x^3 + 2x^2 + 7x 1$ ∴ a = 4, b = -4이므로 2a + b = 4

14 식 A를 간단히 하면 $-5x + \frac{1}{2}y$

식 B를 간단히 하면 -5x+4y-6

$$\therefore 6A - 5B = 6\left(-5x + \frac{1}{3}y\right) - 5(-5x + 4y - 6)$$

$$= -30x + 2y + 25x - 20y + 30$$

$$= -5x - 18y + 30$$

15 (주어진 식)=
$$\frac{6ab \times c^2}{bc} + \frac{3ad}{ac^2} = 6ac + \frac{3d}{c^2}$$
$$= 6 \times 2 \times (-1) + \frac{3 \times 5}{(-1)^2} = -12 + 15 = 3$$

16
$$\frac{15xy - 10yz + 6xz}{30xyz} = \frac{1}{2z} - \frac{1}{3x} + \frac{1}{5y}$$
$$x = \frac{2}{3}, y = -\frac{4}{5}, z = -\frac{1}{2} = \text{대입하면}$$
$$\frac{1}{2} \div \left(-\frac{1}{2}\right) - \frac{1}{3} \div \frac{2}{3} + \frac{1}{5} \div \left(-\frac{4}{5}\right)$$
$$= -1 - \frac{1}{2} - \frac{1}{4} = -\frac{7}{4}$$

- 17 (직사각형의 둘레의 길이)
 - $=2\{-3a+5b+(-2a+3b)\}$

$$=2(-5a+8b)=-10a+16b$$
 ... 1

정삼각형의 한 변의 길이를 A라 하면

$$-10a+16b+3A=2a+19b$$
 ... 2

3A = 12a + 3b

 $\therefore A = 4a + b$

따라서 정삼각형의 한 변의 길이는 4a+b이다. ... 🚯

채점 요소	배점
● 직사각형의 둘레의 길이를 구하기	3점
❷ 정삼각형의 한 변의 길이를 어떤 다항식 A로 놓고 식을 세 우기	4점
③ 정삼각형의 한 변의 길이 구하기	3점
총점	10점

18 (4)에서 (좌변)=3x-(-x+4y)-6y

$$=4x-10y \cdots \bigcirc$$

(개의 x, y의 값을 \bigcirc 에 대입하여 a, b에 관한 식으로 나타내면

$$4x-10y=4(3a+2b)-10\left(\frac{-a+3b}{5}\right)=14a+2b$$
 ... 2

$$\therefore m=14. b=2$$
이므로 $m+n=16$... 3

채점 요소	배점
● 주어진 등식의 좌변을 간단히 나타내기	3점
② 주어진 등식을 <i>a</i> , <i>b</i> 에 관한 식으로 나타내기	5점
③ m+n의 값을 구하기	2점
총점	10점

92~95쪽

Ⅱ 식의 계산

- **01** (5) **02** (5)
- **03** a=3, b=4, c=6, d=4

- **04** ③
- **05** ②
- **06** (4)

- **08** (4)
- 09 1, 4
- 10 $\frac{a^2}{a^2}$
- **11** ①

07 202

- **12** $2a^6b^3c^8$ **13** (5)
- **14** $11x^2 8x 50$

- **15** ③
- 16 기 ㄹ
- **17** $6x^3y^3 10xy^2$
- **18** $b^2 + 3ab$ **19** ⓐ
- **20** 11
- **21** 24

🖊 서술형 문제

- **22** 1
- **23** 26

01
$$x^4 \times y^{15} \times x^6 \times y^{12} = x^{10}y^{27}$$

 $\therefore a+b=10+27=37$

- **02** ① 5 ② 4 ③ 5
- (4) **6** (5) **8**
- **03** $x^{a \times d} y^{b \times d} z^{c \times d} = x^{12} y^{16} z^{24}$ $a \times d = 12$, $b \times d = 16$, $c \times d = 24$ 따라서 d는 12, 16, 24의 최대공약수이므로 d=4 $\therefore a=3, b=4, c=6$
- **04** $3^2 \times 3^2 \times 3^2 = 3^6$ $\therefore a = 6$ $3^2 \times 3^b = 3^5, 2+b=5$ $\therefore b=3$ $3^2+3^2+3^2=3\times 3^2=3^3$: c=3 $\therefore a+b+c=12$
- **05** $9^{x+2} \times 27^{x-1} = 81^{x+1}$ $(3^2)^{x+2} \times (3^3)^{x-1} = 3^{4x+4}$ $3^{2x+4+3x-3} = 3^{4x+4}$ $3^{5x+1} = 3^{4x+4}$ 따라서 5x+1=4x+4이므로 x=3
- **06** $A=2^{x-2}=2^x \div 2^2$ 이므로 $2^x=4A$ $B = 5^{x+1} = 5^x \times 5$ 이므로 $5^x = \frac{1}{5}B$ $10^{x} = (2 \times 5)^{x} = 2^{x} \times 5^{x} = 4A \times \frac{1}{5}B = \frac{4}{5}AB$
- **07** (개) 7의 거듭제곱의 일의 자리의 숫자는 7, 9, 3, 1이 반복된다. $7^{100} \times 49^{20} = 7^{100} \times (7^2)^{20} = 7^{140}$ 에서 $140 = 4 \times 35$ 이므로 (4) $4^{101} \times 5^{200} = (2^2)^{101} \times 5^{200} = 2^{202} \times 5^{200} = 2^2 \times 2^{200} \times 5^{200}$ $=4 \times 10^{200}$

따라서 201자리의 수이므로 n=201

 $\therefore a+n=202$

08 (좌변)=
$$-8x^9y^{3a} \times x^by^{5b} = -8x^{9+b}y^{3a+5b}$$

즉, $-8x^{9+b}y^{3a+5b} = cx^{12}y^{18}$ 이므로
 $9+b=12$ 에서 $b=3$
 $3a+5b=18$ 에서 $a=1$
 $c=-8$
 $\therefore a+b-c=1+3-(-8)=12$

09 ①
$$2x^5 \times (-3x^2) = -6x^7$$

④ $8x^2y \div 4xy \times 2x = 4x^2$

10
$$V_1 = \frac{1}{3}\pi \times (a^2b)^2 \times bc^2 = \frac{1}{3}\pi a^4b^3c^2$$

 $V_2 = \frac{1}{3}\pi \times (bc^2)^2 \times a^2b = \frac{1}{3}\pi a^2b^3c^4$
 $\therefore \frac{V_1}{V_2} = \frac{1}{3}\pi a^4b^3c^2 \div \frac{1}{3}\pi a^2b^3c^4 = \frac{a^2}{c^2}$

11
$$A = 8x^4y^2 \times 4x^2y^4 \times \frac{5}{16x^5y^3} = 10xy^3$$

 $B = x^4y^6 \times \frac{x^6}{y^3} \times \frac{1}{x^5y} = x^5y^2$
 $\therefore A \div 5B = 10xy^3 \div 5x^5y^2 = \frac{2y}{4}$

12
$$A = (a^{2}bc)^{3} \times (2a^{2}bc^{3})^{2} + (3a^{2}b)^{2}$$
 $= a^{6}b^{3}c^{3} \times 4a^{4}b^{2}c^{6} + 9a^{4}b^{2}$
 $= 4a^{10}b^{5}c^{9} + 9a^{4}b^{2}$
 $(4a^{10}b^{5}c^{9} + 9a^{4}b^{2} - 9a^{4}b^{2}) \div \Box = 2a^{4}b^{2}c$
 $\frac{4a^{10}b^{5}c^{9}}{2a^{4}b^{2}c} = \Box$
 $\therefore \Box = 2a^{6}b^{3}c^{8}$

13 (科地)=
$$\frac{3(3x-4y)-2(2x-5y)+6(4x-y)}{6}$$

$$=\frac{9x-12y-4x+10y+24x-6y}{6}$$

$$=\frac{29x-8y}{6}=mx+ny$$

$$\therefore m=\frac{29}{6}, n=-\frac{4}{3}$$

$$m = \frac{6}{6}, n = \frac{3}{3}$$

 $m = \frac{29}{3} - \frac{4}{3} = \frac{25}{3}$

14
$$x^2-5x+8+A=3x^2-4x-3$$

 $\therefore A=3x^2-4x-3-(x^2-5x+8)=2x^2+x-11$
 $x^2-5x+8-B=2x^2-9x+6$
 $\therefore B=x^2-5x+8-(2x^2-9x+6)=-x^2+4x+2$
 $4A-3B=4(2x^2+x-11)-3(-x^2+4x+2)$
 $=8x^2+4x-44+3x^2-12x-6$

$$=11x^2-8x-50$$

15
$$(ax^3 - 10x^2 + 25x) \div 5x = \frac{1}{5}ax^2 - 2x + 5 = -x^2 + bx + c$$

 $\therefore a = -5, b = -2, c = 5$
 $\therefore a + b + c = -2$

17
$$\frac{3}{2}x^2y \times \Box \div x^3y^2 = 9x^2y^2 - 15y$$

 $\therefore \Box = (9x^2y^2 - 15y) \times x^3y^2 \div \frac{3}{2}x^2y$
 $= 6x^3y^3 - 10xy^2$

19 (주어진 식)=
$$\left(6x^2 - \frac{1}{2}xy\right) - \left(\frac{2}{3}x^2y - 4x^3\right) \times \frac{1}{2x}$$
$$= 6x^2 - \frac{1}{2}xy - \frac{1}{3}xy + 2x^2$$
$$= 8x^2 - \frac{5}{6}xy$$

20
$$6A-8B+5=6 imes \frac{4a+b-1}{3}-8 imes \frac{5a-7b+3}{4}+5$$
 $=2(4a+b-1)-2(5a-7b+3)+5$ $=8a+2b-2-10a+14b-6+5$ $=-2a+16b-3$ 따라서 각 항의 계수의 합은 $-2+16+(-3)=11$

21 (주어진 식)=
$$8x-2xy-(2x-y^2-12xy-9y^2+5xy)$$

= $8x-2xy-(2x-10y^2-7xy)$
= $8x-2xy-2x+10y^2+7xy$
= $6x+5xy+10y^2\cdots$ \bigcirc
 $x=4, y=-2$ 를 \bigcirc 에 대입하면 $24-40+40=24$

 $2^6 \times 2 \times 2^8 = 2 \times A \times 2^9$ 에서 $2^{15} = 2^{10} \times A$ $\therefore A = 2^5$ 오른쪽 대각선 줄에서 $B \times 2^5 \times 2^8 = 2^{15}$ $\therefore B = 2^2$

맨 왼쪽 세로줄에서
$$2^6 \times C \times 2^2 = 2^{15}$$
 $\therefore C = 2^7$ \cdots **②**

$$A \times B \div C = 2^5 \times 2^2 \div 2^7 = 1$$

채점 요소	배점
● 64, 256을 각각 2의 거듭제곱꼴로 나타내기	2점
② A, B, C의 값 각각 구하기	4점
③ <i>A</i> × <i>B</i> ÷ <i>C</i> 의 값 구하기	2점
총점	8점

23
$$(2x-3, 6y) \odot (4y, x) = (2x-3) \times 4y + 6y \times x$$

= $8xy - 12y + 6xy$
= $14xy - 12y$...

$$(9xy, x-2) \odot (-1, 3y) = 9xy \times (-1) + (x-2) \times 3y$$

= $-9xy + 3xy - 6y$
= $-6xy - 6y$...

$$\therefore$$
 (주어진 식)= $14xy-12y-6xy-6y=8xy-18y$ $A=0,\,B=8,\,C=-18$ 이므로 $A+B-C=26$ \cdots

채점 요소	배점
① (2x−3, 6y)⊙(4y, x)를 간단히 나타내기	3점
② (9xy, x-2)⊙(-1, 3y)를 간단히 나타내기	3점
③ A+B−C의 값 구하기	2점
<u>총</u> 점	8점

중단원 실전 TEST

• 96∼98쪽 •

... 🚯

1 일차부등식 Ⅲ 일차부등식과 연립일차방정식 01 ④ 02 ⑤ 03 ③ 04 ① 05 ① 06 y≥-3 07 ③ 08 ③ 09 ② 10 10, 11, 12 11 20, 22, 24 12 8개 13 11개월 14 14 cm 이상 15 1 km 16 -1<y≤-2/2

🔼 서술형 문제

02 ⑤ (좌변)=
$$-3 \times \left(-\frac{3}{2}\right) = \frac{9}{2}$$
 (우변)= $-\left(-\frac{3}{2}\right) + 4 = \frac{11}{2}$

03 ①
$$z>0$$
일 때는 $xz, $z<0$ 일 때는 $xz>yz$ ② $x=-2$, $y=-1$ 이면 $-2<-1$ 이지만 $(-2)^2>(-1)^2$ ③ $x에서 $2x<2y$ $\therefore 2x-2y<0$$$

④
$$x = -2$$
, $y = -1$ 이면 $-2 < -1$ 이지만 $-\frac{1}{2} > -1$

⑤
$$x < y$$
에서 $-x > -y$

04
$$3A+2B=10$$
에서 $2B=10-3A$, $\therefore B=\frac{10-3A}{2}$
 $-2 < A \le 5$ 에서 $-15 \le -3A < 6$, $-5 \le 10-3A < 16$
 $\therefore -\frac{5}{2} \le B < 8$

05
$$-3x-6 \le a(x-3)+4$$
에서 $(-a-3)x+3a-10 \le 0$ 이 식에서 일차부등식이 되기 위해서는 $-3-a \ne 0$ 이어야 하므로 $a\ne -3$

즉. $4(y+9) \ge y+27$ 를 풀면 $y \ge -3$

07 부등식
$$0.1x - \frac{2}{5} \le 2 + \frac{1}{2}x$$
의 양변에 10 을 곱하면

 $x-4 \le 20+5x, -4x \le 24$: $x \ge -6$

09
$$\frac{x-2}{3} + \frac{3x-1}{2} < 1$$
의 양변에 6을 곱하여 정리하면 $11x < 13$ 이므로 $x < \frac{13}{11}$ 이다. 따라서 x 의 값 중 가장 큰 정수는 1이다.

12 쿠키의 개수를
$$x$$
개라 하면 사탕의 개수는 $(15-x)$ 개이므로 $500x+300(15-x) \le 6200$ $200x \le 1700$

 $\therefore x \leq 8.5$

따라서 쿠키는 최대 8개까지 살 수 있다.

13 x개월 후의 예금을 계산하면

형은 (8000+1500x)원, 누나는 (6000+4000x)원이다. 누나의 예금액이 형의 예금액의 2배보다 많아지려면 6000+4000x>2(8000+1500x)

부등식을 풀면 x>10

따라서 누나의 예금액이 형의 예금액의 2배보다 많아지는 것 은 11개월째부터이다.

- **14** 아랫변의 길이를 x cm라 하면 $(10+x) \times 6 \times \frac{1}{2} \ge 72$ 이므로 $x \ge 14$ 따라서 아랫변의 길이는 14 cm 이상이어야 한다.
- 15 터미널에서 상점까지의 거리를 x km라 하면 (상점으로 가는데 걸린 시간) $+\frac{1}{3}$ +(돌아오는 데 걸린 시간) $\leq \frac{5}{6}$ 이어야 한다.

$$\leq$$
, $\frac{x}{4} + \frac{1}{3} + \frac{x}{4} \leq \frac{5}{6}$, $3x + 2 \leq 5$ $\therefore x \leq 1$

따라서 $1 \, \mathrm{km}$ 이내의 상점을 다녀올 수 있다.

- **16** 주어진 부등식을 풀면 $-x \ge 3a+4$ $\therefore x \le -3a-4$ 이때 부등식을 만족시키는 자연수가 2개이므로 $2 \le -3a-4 < 3$, $6 \le -3a < 7$ $\therefore -7 < 3a \le -6$ 3y-3a=4에서 3a=3y-4이므로 $-7 < 3y-4 \le -6$ $-3 < 3y \le -2$ $\therefore -1 < y \le -\frac{2}{3}$
- **17** $3(4x+2)-1 \le 7x+20$ 에서 $12x+6-1 \le 7x+20$,

$$5x \le 15$$
 $\therefore x \le 3$

 $a(x-4) \ge bx-16$ 에서 $(a-b)x \ge 4a-16$

이 부등식의 해가 $x \le 3$ 이어야 하므로

$$a-b<0, \stackrel{\triangleleft}{\prec}, a< b$$
 ...

이때
$$x \le \frac{4a-16}{a-b}$$
이므로 $\frac{4a-16}{a-b} = 3$, $4a-16 = 3a-3b$

$$\therefore a+3b=16 \qquad \cdots$$

a+3b=16을 만족시키는 자연수 a, b의 값을 순서쌍으로 나타내면 (1,5), (4,4), (7,3), (10,2), (13,1) 그런데, a < b이어야 하므로 a=1, b=5 ··· **4**

채점 요소	배점
1 3(4x+2)−1≤7x+20의 해 구하기	2점
② a와 b의 대소 관계를 구하기	2점
③ a, b 사이의 관계식을 구하기	3점
$oldsymbol{\Phi}$ 조건을 만족시키는 a,b 의 값을 각각 구하기	3점
총점	10점

18 A, B 아이스크림을 각 1통씩 만드는 데 필요한 우유의 양은 100 mL. 75 mL이다 ... €

또, A 아이스크림을 x통 만들려고 하면 B 아이스크림은 (20-x)통이므로

$$100x + 75(20 - x) \le 1800$$
 ...

 $\therefore x \leq 12$

따라서 A 아이스크림은 12통까지 만들 수 있다. ...

채점 요소	배점
♠ A, B 아이스크림을 각 1통씩 만드는 데 필요한 우유의 양을 구하기	각 2점
② 부등식 세우기	3점
❸ 만들 수 있는 A 아이스크림의 통의 개수 구하기	3점
총점	10점

99~101쪽

2 연립일차	방정식	Ⅲ 일차부등식	니과 연립일차방정식
01 4	02 ⑤	03 ③	
04 <i>a</i> =3, <i>b</i>	=4	05 ②	06 -9
07 2	08 <i>x</i> =-	2, y = -1	09 84
10 15살	11 A : 49	일, B : 3일	12 2300원
13 400 g	14 $\frac{2}{3}$	15 210 m	16 96명
🙋 서술형 문제	I		
17 40	18 18분		

01 ①, ②, ⑤ 차수가 2

... 🕦

- ③ 분모에 미지수가 있으므로 일차방정식이 아니다.
- **02** § $4 \times 4 3 \times (-6) + 2 = 36 \neq 0$
- **03** *x*=3, *y*=1을 두 방정식에 각각 대입하였을 때 모두 참인 것을 찾는다.

$$3$$
 $\begin{cases} 3 \times 3 + 4 \times 1 = 13 \\ 4 \times 3 - 1 = 11 \end{cases}$

04
$$\begin{cases} ax+5y=9 \\ bx-ay=-17 \end{cases}$$
 에 $x=-2, y=3$ 을 대입하면 $-2a+5\times 3=9$ 에서 $-2a=-6$ $\therefore a=3$

$$-2b-3a=-17$$
에서 $-2b-9=-17$ $\therefore b=4$

- $\bigcirc \times 5$ 를 하면 15x + 25y = -10양변을 빼면 -16y=16따라서 x를 소거하는 식은 $\bigcirc \times 3 - \bigcirc \times 5$
- $\begin{cases} 5x 3y = 3 \\ 3y = 4x \end{cases}$ 를 풀면 x = 3, y = 4x=3, y=4를 4x-5y=2a에 대입하면 12-20=2a : a=-4 $\therefore x+y-a^2=3+4-16=-9$ **07** $\begin{cases} -2x+5y=-5 \\ x-3y=2 \end{cases}$ 를 풀면 x=5, y=1
- 두 식 ax+by=6, ax-2by=3에 x=5, y=1을 각각 대입하면 $\begin{cases} 5a+b=6 \\ 5a-2b=3 \end{cases}$
 - 이 연립방정식을 풀면 a=1, b=1 $\therefore a+b=2$
- **08** $\begin{cases} \frac{4x+y}{3} = 2x y \\ \frac{x-4}{2} = 2x y \end{cases}$ oil $\begin{cases} -x + 2y = 0 \\ -3x + 2y = 4 \end{cases}$
- \bigcirc 처음 두 자리 자연수의 십의 자리의 숫자를 x. 일의 자리의 숫 자를 y라 하면

$$\left\{ \begin{matrix} 10x + y = 7(x+y) \\ 10x + y = (10y+x) + 36 \end{matrix} \right. \left. \begin{matrix} x = 2y \\ x = y + 4 \end{matrix} \right.$$

 $\therefore x=8, y=4$

따라서 처음 두 자리 자연수는 84이다.

10 현재 아버지의 나이를 x세. 아들의 나이를 y살이라 하면

$${x-y=27 \atop x+5=2(y+5)+7} \rightarrow {x-y=27 \atop x-2y=12}$$

- 이 연립방정식을 풀면 x=42, y=15따라서 현재 아들의 나이는 15살이다.
- **11** A가 x일, B가 y일 일했다고 하고 전체 일의 양을 1이라 하면

따라서 A는 4일, B는 3일을 일했다.

12 비빔라면 1개의 가격을 x원, 김치라면 1개의 가격을 y원이라 하면

$$\begin{cases} 3x + y = 3900 \\ x + 3y = 5300 \end{cases} \therefore x = 800, y = 1500$$

따라서 비빔라면 1개와 김치라면 1개를 사려면 800+1500=2300(위)이 필요하다

13 6 %의 소금물을 $x g \cdot 10$ %의 소금물을 y g 섞는다고 하면

$$\begin{cases} x + y + 200 = 1200 \\ \frac{6}{100}x + \frac{10}{100}y = \frac{7}{100} \times 1200 \end{cases} \rightarrow \begin{cases} x + y = 1000 & \cdots \bigcirc \\ 3x + 5y = 4200 \cdots \bigcirc \end{cases}$$

- \bigcirc , \bigcirc 을 연립하여 풀면 x=400, y=600따라서 6 %의 소금물은 400 g 섞어야 한다.
- **14** $\frac{a}{4} = \frac{1}{3} \neq \frac{5}{24a}$ $\text{Alt} \ a = \frac{4}{3}$ $\left(\frac{4}{3}\!+\!b\!-\!2\right)\!\!x\!+\!(b\!-\!1)\!=\!0$ 이 해를 가지지 않으려면 $\frac{4}{3}+b-2=0$, $b-1\neq 0$ 이어야 하므로 $b=\frac{2}{3}$
- **15** A 기차의 길이를 x m. B 기차의 길이를 y m라 하면

$$\begin{cases} x-y=80 \\ 2 imes rac{550+x}{42} = rac{550+y}{19} \end{cases}$$
에서 $\begin{cases} x-y=80 \\ 19x-21y=1100 \end{cases}$ $\therefore x=290, y=210$ 따라서 B 기차의 길이는 210 m이다.

16 작년의 남학생 수를 x명, 여학생 수를 y명이라 하면

$$\begin{cases} x+y=361-11 \\ \frac{6}{100}x-\frac{4}{100}y=11 \end{cases} \Rightarrow \begin{cases} x+y=350 \\ 3x-2y=550 \end{cases}$$
$$\therefore x=250, y=100$$
 따라서 올해 여학생 수는 $100-100 \times \frac{4}{100}=96$ (명)

17 x=-2, y=3을 5x+cy=2에 대입하면

$$-10+3c=2$$
 $\therefore c=4$ $x=-2$, $y=3$ 과 $x=2$, $y=-2$ 를 각각 $ax+by=8$ 에 대입하면 $-2a+3b=8$ \cdots \odot

 \bigcirc . \bigcirc 을 연립하여 풀면 $a{=}20$, $b{=}16$

... **A**

... ①

 $\therefore a+b+c=40$

2a-2b=8 ... ©

재섬 <u>요소</u>	배섬
c의 값 구하기	3점
$m{a},b$ 의 값 각각 구하기	6점
↑ α + h + c 이 가 그하기	1저

♥ C의 값 구하기	3섬
② a, b 의 값 각각 구하기	6점
③ a+b+c의 값 구하기	1점
총점	10점

18 병만이의 속력을 분속 x m, 종국이의 속력을 분속 y m라 하면

... 0

$$\begin{cases} 30x - 20y = 3600 \\ 15x + 5y = 3600 \end{cases} \therefore x = 200, y = 120 \qquad \cdots ②$$

따라서 병만이의 속력은 분속 200 m이므로 병만이가 호수

를 한 바퀴 도는 데 걸리는 시간은 $\frac{3600}{200}$ =18(분) ··· ③

채점 요소	배점
① x, y의 값 정하기	2점
② x, y의 값 구하기	6점
❸ 병만이가 호수를 한 바퀴 도는 데 걸리는 시간 구하기	2점
총점	10점

• 102~105쪽 •

일차부등식과 연립일차방정식 01 12 02 ⑤ 03 ① 04 ③, ⑤ 05 ① 06 $\frac{21}{2}$ 07 ⑤ 08 ④ 09 3개 10 ② 11 -2 12 ④

- **13** -1 **14** ④ **15** ⑤ **16** 500 m
- **17** 30명 **18** 30 % **19** 48분 **20** 22회
- **21** 40 g
- 🔼 서술형 문제
- **22** 4개 **23** 10
- **01** *x*는 1, 2, 3, 4, 5이므로 3*x*−6≥3에 대입하여 참이 되는 *x*의 값은 3, 4, 5이다
 - 3+4+5=12
- **02** ① -3+2a < -3+2b이면 a < b이므로 -2a-1 > -2b-1
 - ③ $\frac{1}{3}a>\frac{1}{3}b$ 에서 a>b이므로 $-3+\frac{1}{2}a>-3+\frac{1}{2}b$
 - ⑤ 2a<2b이면 a-(-1)<b-(-1)
- **03** b+2a=1이므로 b=-2a+1 -3≤b<5에서 -3≤-2a+1<5 -4≤-2a<4
 - $\therefore -2 < a \le 2$
- **04** ① $3 \ge -1$ ② x-3=3x+2
 - ③ x-7>4 ④ $\pi x^2 \le 10$

- (5) $1000 + 500x \le 7000$
- ○5 양변에 6을 곱하면
 6-2(2x+1)<3(3-x)
 6-4x-2<9-3x
 -x<5 ∴ x>-5
 따라서 x의 값 중 가장 작은 정수는 -4이다.
- 06 $4x \le 10 + 6x$ 를 풀면 $x \ge -5$ $3 - \frac{x}{2} \le x + a$ 에서 $6 - x \le 2x + 2a$, $-3x \le 2a - 6$ $\therefore x \ge \frac{6 - 2a}{3}$ 두 부등식의 해가 같으므로 $\frac{6 - 2a}{3} = -5$ 6 - 2a = -15 $\therefore a = \frac{21}{2}$
- **07** 4(x-3)>5(6+2x)에서 괄호를 풀면 4x-12>30+10x, -6x>42 ∴ x<-7
- x+5y=16에서 x=-5y+16 ··· ⊙
 ⊙에 y=1, 2, 3, 4, ···를 차례로 대입하면
 x=11, 6, 1, -4, ···
 그런데 x, y는 자연수이므로 x+5y=16을 만족시키는 해는
 (1, 3), (6, 2), (11, 1)의 3개이다.
- 10 y항의 계수의 절댓값이 같아지도록 식을 변형하면
 ○×12:4x+3y=24
 ○×10:x+3y=15
- 11 x-2y=17에 x=5, y=b를 대입하면 5-2b=17 ∴ b=-6 y=ax-26에 x=5, y=-6을 대입하면 -6=5a-26 ∴ a=4 ∴ a+b=-2
- **12** x=2y를 ①과 ②에 각각 대입하면 $\begin{cases} 3y=a\\ 4y=7-a \end{cases} \therefore a=3, y=1$
- 13 1을 A라고 잘못보고 풀었다 하면 y=5는 연립방정식 $\begin{cases} 3(x-1)+y=14 & \cdots & \bigcirc \\ x-y=A & \cdots & \bigcirc \end{cases}$ 의 해이다. y=5를 \bigcirc 에 대입하면 3(x-1)+5=14, 3x=12 $\therefore x=4$

$$x=4$$
, $y=5$ 를 ①에 대입하면 $4-5=A$

$$\therefore A = -1$$

14
$$\begin{cases} \frac{3x-y}{4} = -\frac{x-4}{2} \\ 0.3x - 0.2y + 1 = -\frac{x-4}{2} \end{cases}$$

$${3x-y=-2(x-4)\atop 3x-2y+10=-5(x-4)} \to {5x-y=8\atop 8x-2y=10}$$

$$\therefore x=3, y=7$$

$$\therefore a=3, b=7$$
이므로 $b-a=4$

15 ⑤
$$\frac{1}{2} = \frac{-2}{-4} \neq \frac{-1}{1}$$
이므로 해가 없다.

16 집에서 x km 떨어진 상점을 이용한다면

$$\frac{x}{3} + \frac{1}{6} + \frac{x}{3} \le \frac{1}{2}$$
 $\therefore x \le \frac{1}{2}$

따라서 집에서 $\frac{1}{2}$ km, 즉 500 m 이내에 있는 상점을 이용 하면 된다.

17 x명 입장할 때. 총 입장료는 $\{10000+200(x-20)\}$ 원 x명 평균 입장료를 400원으로 볼 때, 총 입장료는 400x원이다. 한 사람당 입장료가 평균 400원 이하가 되려면

$$10000 + 200(x-20) \le 400x$$

 $10000 + 200x - 4000 \le 400x$

 $200x \ge 6000$ $\therefore x \ge 30$

따라서 30명 이상 입장해야 한다.

18 계란 1개의 구입가격은 200원이고, 1개에 x %의 이익을 붙 인다고 하면

$$900 \times 200 \times \left(1 + \frac{x}{100}\right) \ge 1000 \times 200 \times (1 + 0.17)$$

 $900 + 9x \ge 1170$ $\therefore x \ge 30$

$$\therefore r > 3$$

따라서 30 % 이상의 이윤을 붙여야 한다.

19 가요는 x곡, 클래식은 y곡 실려 있다면 합하여 19곡이므로 $x+y=19 \cdots \bigcirc$

플레이리스트의 재생 시간은 총 60분이므로

 $3x+4y=60 \cdots \bigcirc$

두 식 \bigcirc , \bigcirc 을 연립하여 풀면 x=16, y=3이다. 따라서 가요는 16곡이므로 3×16=48(분)이 걸린다.

20 인현이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 소라가 이긴 횟수는 y회, 진 횟수는 x회이므로

$$\begin{cases} 2x - y = 27 \\ 2y - x = 12 \end{cases} \quad \therefore x = 22, y = 17$$

따라서 인현이가 이긴 횟수는 22회이다.

21

	6 %의 소 금물	8 %의 소 금물	증발된 물	총량
소 금물 의 양 (g)	x	y	2x	280
소금의 양 (g)	$\frac{6}{100}x$	$\frac{8}{100}y$	0	$\frac{9}{100} \times 280$

$$\begin{cases} x+y-2x=280 \\ \frac{6}{100}x + \frac{8}{100}y = \frac{9}{100} \times 280 \end{cases} \Rightarrow \begin{cases} -x+y=280 \\ 3x+4y=1260 \end{cases}$$

 $\therefore x = 20, y = 300$

따라서 증발시켜야 할 물의 양은 $2 \times 20 = 40(g)$ 이다.

22 $\frac{x+a}{3} - \frac{3-2x}{2} < 1$ 에서 양변에 6을 곱하면

2(x+a)-3(3-2x)<6, 2x+2a-9+6x<6

$$8x < -2a + 15$$
 $\therefore x < \frac{-2a + 15}{8}$ \cdots \bullet

이 부등식을 만족시키는 자연수가 2개이므로

$$2 < \frac{-2a+15}{8} \le 3$$
, $16 < -2a+15 \le 24$

$$1 < -2a \le 9$$
 $\therefore -\frac{9}{2} \le a < -\frac{1}{2}$... 2

따라서 정수 a의 개수는 -4, -3, -2, -1의 4개이다.

... 🚯

채점 요소	배점
● 부등식 간단히 하기	3점
② 조건을 만족시키는 부등식을 세우고 a 의 값의 범위 구하기	3점
3 정수 <i>a</i> 의 개수 구하기	2점
총점	8점

23 연립방정식
$$\begin{cases} 4x + 7y = 2 \\ 6x + ay = 8 \end{cases}$$
 의 해를 $x = p, y = q$ 라 하면 … **①**

$$\begin{cases} 4p + 7q = 2 & \cdots & \bigcirc \\ 6p + aq = 8 & \cdots & \bigcirc \end{cases}$$

$$6p+aq=8 \cdots \bigcirc$$

연립방정식
$$\left\{egin{array}{ll} bx-2y=-12 \\ 8x+9y=11 \end{array}
ight.$$
 에 $x=p+1$, $y=q+1$ 을 대

$$\begin{cases} b(p+1)-2(q+1) = -12 & \cdots \\ 8(p+1)+9(q+1) = 11 & \cdots \end{cases}$$

$$\bigcirc$$
, 응을 연립하여 풀면 $p=-3$, $q=2$... **②**

p=-3, q=2를 \bigcirc , \bigcirc 에 각각 대입하여 풀면

$$a=13, b=3$$

∴ $a-b=10$

... 🚯

채점 요소	배점
● 두 연립방정식의 해를 각각 정하기	1점
❷ p, q를 구하기 위한 연립방정식 풀기	4점
③ <i>a−b</i> 의 값 구하기	3점
총점	8점

<mark>중단원 실전</mark> TEST

• 106~108쪽 •

1 일차함수오	- 그래프		Ⅳ 일차함수
01 ④	02 11	03 ③, ④	04 1
05 ②	06 ⑤	07 20	08 2
09 $-\frac{6}{5}$	10 ⑤	11 ③	12 ⑤
13 ③	14 36 cm	15 200 cm ²	16 2명
🙆 서술형 문제			
17 -4, 20	18 10시 30분	<u>l</u>	

- **01** ④ x의 값이 정해짐에 따라 y의 값이 오직 하나씩 대응되는 관계가 아니므로 함수가 아니다.
- **02** f(3)=1+3a-3=3a-2이므로 3a-2=5 $\therefore a=\frac{7}{3}$ 따라서 $f(x)=1+\frac{7}{3}x-x=\frac{4}{3}x+1$ 이므로 $f(-1)=\frac{4}{3}\times(-1)+1=-\frac{1}{3}$ $f(0)=\frac{4}{3}\times0+1=1$ $f(7)=\frac{4}{3}\times7+1=\frac{31}{3}$ f(-1)+f(0)+f(7)=11
- **03** ① x의 값이 3만큼 증가할 때, y의 값은 5만큼 감소한다. ② x절편은 $\frac{12}{5}$ 이다.
 - ⑤ 함수 $y = -\frac{5}{3}x$ 의 그래프를 y축의 방향으로 4만큼 이동한 그래프와 일치한다.
- **04** y=ax-5에 x=-3, y=4를 대입하면 4=-3a-5 $\therefore a=-3$ y=-3x-5에 x=-2b, y=b를 대입하면 b=6b-5 $\therefore b=1$
- **05** x의 값이 2만큼 증가할 때, y의 값은 4만큼 증가하므로 기울기 a=2

따라서 그래프의 식은 y=2x-4이다. 이 그래프는 y=2x+2의 그래프를 y축의 방향으로 -6만큼 평행이동한 것이므로 p=-6 $\therefore a+p=2+(-6)=-4$

06 y=ax+b(단, a, b는 상수)라 놓으면 (카에서 a=(7]울기) $=\frac{5}{2-(-3)}=1$ (나에서 b=(y절편)=-2 따라서 조건을 모두 만족시키는 일차함수의 식은 y=x-2

07
$$\frac{7-3}{2-(-1)} = \frac{12-7}{a-2}$$
 of $|k| 4(a-2) = 15$
∴ $a = \frac{23}{4}$
∴ $4a-3=20$

- **08** 일차함수 y=ax+b의 그래프가 제3사분면을 지나지 않으므로 a<0, b>0이다. 일차함수 y=bx+a의 그래프는 기울기가 양수이고 y절편이 음수이므로 그래프는 ②이다.
- **09** y=3x-6의 그래프의 x절편은 2, y절편은 -6 y=ax-6의 그래프의 x절편은 $\frac{6}{a}$, y절편은 -6 따라서 삼각형의 넓이는 $\frac{1}{2} \times \left(2-\frac{6}{a}\right) \times 6 = 21$ $2-\frac{6}{a}=7, \ \frac{6}{a}=-5 \qquad \therefore a=-\frac{6}{5}$
- **10** y절편이 -2이고 기울기 $\frac{3}{2}$ 이므로 두 점 (0, -2), (2, 1)을 지나는 직선을 찾으면 5이다.
- **11** 두 점 (2, 11), (-1, 2)를 지나는 직선의 기울기는 $\frac{11-2}{2-(-1)} = 3$ 두 점 (a, a+1), (-1, 2)를 지나는 직선의 기울기도 $\frac{2-(a+1)}{-1-a} = 3$ 이므로 1-a=-3-3a $\therefore a=-2$
- **12** 두 점 $\left(\frac{3}{4}, 0\right)$, (0, 3)을 지나므로 y=ax+3에서 $x=\frac{3}{4}$, y=0을 대입하여 풀면 a=-4 y=-4x+3의 그래프를 y축의 양의 방향으로 3만큼 평행이 동한 직선의 식은 y=-4x+6 y=-4x+6에 x=k, y=-2를 대입하여 풀면 k=2
- **13** 지면에서 x km인 지점의 온도를 y $^{\circ}$ C라 하자. 1 km씩 높아 질 때마다 6 $^{\circ}$ C씩 내려가므로 x km 높아지면 기온은 6x $^{\circ}$ C

만큼 내려간다.

따라서 x y 사이의 관계식은 $y=15-6x(0 \le x < 10)$ x=5를 대입하면 y=15-30=-15따라서 비행기 표면의 온도는 -15 °C이다.

14 무게가 x g인 물건을 달았을 때, 용수철의 길이를 y cm라 하자. 무게가 10 g인 물건을 달면 용수철의 길이는 2 cm가 늘어나 므로 무게가 1 g인 물건을 달면 용수철의 길이는 $\frac{1}{5}$ cm가 늘 어난다

따라서 x, y 사이의 관계식은 $y=20+\frac{1}{5}x(0 \le x \le 300)$ x=80을 대입하면 y=20+16=36 따라서 무게가 80 g인 물건을 달면 용수철의 길이는 36 cm 이다

- **15** x초 후에 $\overline{BP} = 4x(cm)$ $\overline{CP} = (40-4x)cm$ $y = \frac{1}{2} \times (40 - 4x) \times 20 = 400 - 40x$ 이때 0 < 4x < 40에서 0 < x < 10따라서 점 P가 점 B에서 출발한 지 5초 후의 △APC의 넓이는 $400-40\times5=200(\text{cm}^2)$ 이다
- **16** 유리 : 기온이 5 ℃ 올라갈 때마다 소리의 속력은 3 m/초씩 증가하므로 1 °C 올라가면 $\frac{3}{5}$ m/초 증가한다. 따라서 x, y 사이의 관계식은 $y=\frac{3}{5}x+331(x\geq0)$

주혁: $a = \frac{3}{5} \times 25 + 331 = 346$,

소민: $352 = \frac{3}{5}x + 331$ 에서 x = 35

현우: 0 °C에서의 소리의 속력은 초속 331 m이므로 $10 \times 331 = 3310 \text{ (m)} = 3.31 \text{ (km)}$

17 두 함수 y=4x+4, y=ax+b의 그래프는

기울기가 같으므로 a=4y=4x+4의 x절편은 -1이므로 A(-1,0)

그런데 \overline{AB} =3이므로 B(-4, 0) 또는 B(2, 0)

y=4x+b에서

- (i) B(-4, 0)를 지날 때, $0=4\times(-4)+b$ 이므로 b=16
- (ii) B(2, 0)을 지날 때, $0=4\times2+b$ 이므로 b=-8 ... ② 따라서 (i) (ii)에서

$$a+b=4+(-8)=-4$$
 $\pm \frac{1}{2}$ $a+b=4+16=20$... 3

채점 요소	배점
❶ <i>a</i> 의 값 구하기	2점
$m{0}$ 점 B 가 될 수 있는 점의 좌표에 따른 b 의 값 구하기	4점
$oldsymbol{0}$ $a+b$ 의 값이 될 수 있는 것 모두 구하기	4점
총점	10점

18 x분 동안 동생이 움직인 거리는 100x m이고. (x-10)분 동 안 형이 움직인 거리는 150(x-10) m이다. 두 사람 사이의 거리를 y m라 할 때. x. y 사이의 관계식은 y=100x-150(x-10)

 $\therefore y = 1500 - 50x(♀, x ≥ 10)$

... 🕖

두 사람이 만나는 것은 y=0일 때이므로 1500-50x=0

따라서 형과 동생은 30분 후인 10시 30분에 만난다.

채점 요소	배점
❶ 시간에 따른 동생과 형이 움직인 거리 구하기	4점
시간에 따른 두 사람 사이의 거리의 관계식 구하기	3점
❸ 형과 동생이 만나는 시각 구하기	3점
총점	10점

• 109~111쪽 •

2 일차함수와 일차방정식 Ⅳ 일차함수 **01** $\frac{3}{2}$ **02** ②, ⑤ 03 - 3**04** (1), (5) 08 - 6**05** (1) **06** ② **07** ① **09** 0 **10** 0 **11** 9 **12** 3 **15** $\left(\frac{6}{5}, \frac{6}{5}\right)$ **13** 9 **14** 0.9 **16** y = 32x + 16

🔼 서술형 문제

... 0

17 $\frac{3}{2}$ 18 50개

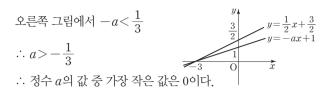
01 3x - ay + 4 = 0 에서 $y = \frac{3}{a}x + \frac{4}{a}$ $\frac{4}{a} = 2$ 이므로 a = 2

따라서 기울기 $\frac{3}{a} = \frac{3}{2}$

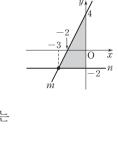
- **02** x+2y-6=0을 y에 관하여 풀면 $y=-\frac{1}{2}x+3$
 - ② 점 (2.2)를 지난다.
 - ⑤ 그래프는 제1. 2. 4사분면을 지난다.
- **03** y = -ax 6의 그래프에서

$$x$$
절편은 $-\frac{6}{a}$, y 절편은 -6 이므로
$$(\stackrel{.}{\Box}\circ) = \frac{1}{2} \times \left(-\frac{6}{a}\right) \times 6 = 6\left(\because -\frac{6}{a} > 0\right)$$
$$\therefore a = -3$$

- **04** ax+by+c=0을 y에 관하여 풀면 $y=-\frac{a}{b}x-\frac{c}{b}$ (기울기)<0, (y절편)<0이므로 $-\frac{a}{b}$ <0, $-\frac{c}{b}$ <0 $\therefore \frac{a}{b}$ >0, $\frac{c}{b}$ >0 따라서 a,b,c의 부호는 모두 같다.
- **05** x축과 평행하면 y=k(k는 상수)의 꼴이어야 한다. 따라서 a+2=-4a-3이므로 a=-1
- **06** ax-by-1=0의 그래프가 y축에 수직이므로 a=0 $\therefore y=-\frac{1}{b}$ 이 그래프가 제3, 4사분면을 지나므로 $-\frac{1}{b}<0 \qquad \therefore b>0$
- ○7 두 직선의 교점의 x좌표는 2이므로 x=2를 y=3x-4에 대입하면 y=2 따라서 교점의 좌표는 (2, 2)이다.
 y=ax-b의 그래프의 y절편이 4이므로 b=-4 y=ax+4에 x=2, y=2를 대입하면 2=2a+4 ∴ a=-1
 ∴ a+b=-5
- **08** ax-5y+3=0에서 y=0일 때, ax+3=0 $\therefore x=-\frac{3}{a}$ 2x+y-1=0에서 y=0일 때, 2x-1=0 $\therefore x=\frac{1}{2}$ 따라서 $-\frac{3}{a}=\frac{1}{2}$ 이므로 a=-6
- **09** ax-by-3=0에서 $y=\frac{a}{b}x-\frac{3}{b}$ 이므로 평행이동한 그래프의 식은 $y=\frac{a}{b}x-\frac{3}{b}-1$ 또, 두 점 (-2,4), (3,-1)을 지나는 직선을 그래프로 하는 일차함수의 식은 y=-x+2 따라서 $\frac{a}{b}=-1$, $-\frac{3}{b}-1=2$ 이므로 a=1, b=-1 $\therefore a+b=0$
- **10** y=-ax+1에 x=-3, y=0을 대입하면 0=3a+1에서 $a=-\frac{1}{3}$ 두 그래프가 제2사분면에서 만나려면



- **11** 직선 l의 기울기는 $-\frac{4}{2} = -2$ 이고 직선 m의 y절편은 1이므로 ax+by-3=0의 그래프의 기울기는 -2, y절편은 1이다. 즉, $y=-\frac{a}{b}x+\frac{3}{b}$ 에서 $-\frac{a}{b}=-2$, $\frac{3}{b}=1$ 따라서 a=6, b=3이므로 a+b=9
- **12** 연립방정식 $\begin{cases} 3x+y-11=0 \\ 2x+y-9=0 \end{cases}$ 의 해는 x=2, y=5 따라서 직선 ax-y+3=0이 점 (2,5)를 지나므로 2a-5+3=0 $\therefore a=1$ $\therefore 2a+1=3$
- 13 직선 m의 기울기는 $\frac{10-2}{3-(-1)}=2$ y=2x+b에 x=-1, y=2를 대입하여 풀면 b=4 $\therefore y=2x+4$ 직선 n은 x축에 평행하므로 y=-2 따라서 오른쪽 그림에서 구하는 넓이는 $\frac{1}{2} \times 3 \times 6=9$



- 14 (i) 세 직선이 한 점에서 만날 때, $\begin{cases} y = x 1 \\ 2y = 3 x \end{cases} \stackrel{\text{=}}{=} \frac{5}{3}, y = \frac{2}{3} \end{cases}$ $y = ax \text{에 } x = \frac{5}{3}, y = \frac{2}{3} \stackrel{\text{=}}{=} \text{ If } \text{Uhi The } \frac{2}{3} = \frac{5}{3}a$ $\therefore a = \frac{2}{5}$ (ii) 세 직선 중 두 직선이 평행할 때,
 - (ii) 제 작전 중 구 작전이 중앙될 때, $y{=}x{-}1,\,y{=}-\frac{1}{2}x{+}\frac{3}{2}$ 에서 $a{=}1$ 또는 $a{=}-\frac{1}{2}$ 따라서 (i), (ii)에서 $0.4{+}1{-}0.5{=}0.9$
- **15** $\frac{x}{2} + \frac{y}{3} = 1$ 에서 3x + 2y 6 = 0 ··· ① $\frac{a}{2}x + \frac{b}{3}y = -1$ 에서 3ax + 2by + 6 = 0 두 직선은 평행하므로 $\frac{3}{3a} = \frac{2}{2b} \neq \frac{-6}{6} \qquad \therefore a = b$

따라서 x=a, y=a를 \bigcirc 에 대입하면 3a+2a-6=0 $\therefore a = \frac{6}{5}$

따라서 점 P의 좌표는 $\left(\frac{6}{5}, \frac{6}{5}\right)$

16 두 직선은 일치하므로

$$\frac{2a}{1} = \frac{-1}{2} = \frac{3}{-b+2}$$
 $\Rightarrow a = -\frac{1}{4}, b = 8$

 $8x - \frac{1}{4}y = 3$ $\Rightarrow y = 32x - 12$

따라서 기울기는 32이므로 y=32x+k라 하고

 $x = -\frac{1}{4}$, y = 8을 대입하면

8 = -8 + k : k = 16

 $\therefore y = 32x + 16$

17 네 방정식 x=-2, x=4,

y = -3. y = 2의 그래프를

그려보면 오른쪽 그림과

<u> 같으므로</u>

색칠한 부분의 넓이는

$${4-(-2)} \times {2-(-3)}$$

=30

사다리꼴 ABCD에서

$$\overline{AD} = 4 - (a+2) = 2 - a$$

$$\overline{BC} = 4 - (a - 3) = 7 - a$$

이때 사다리꼴 ABCD의 넓

$$\frac{1}{2} \times \{(2-a) + (7-a)\} \times 5 = \frac{1}{2} \times 30$$
이므로 ··· •

$$9-2a=6, -2a=-3$$
 : $a=\frac{3}{2}$

채점 요소	배점
❶ 네 직선의 그래프 그리기	4점
② 조건을 만족시키는 식 세우기	4점
③ a의 값 구하기	2점
총점	10점

18 그래프 A는 두 점 (0, 0), (30, 36000)을 지나므로 직선 A의 방정식은 y=1200x... 1

그래프 B는 두 점 (0, 20000), (20, 36000)을 지나므로

직선 B의 방정식은 y=800x+20000

1200x = 800x + 20000, 400x = 20000 $\therefore x = 50$

따라서 손해를 보지 않으려면 도넛을 50개 이상 팔아야 한다.

채점 요소	배점
❶ 직선 A의 그래프의 식 구하기	3점
❷ 직선 B의 그래프의 식 구하기	3점
❸ 손해를 보지 않기 위해 팔아야 하는 도넛의 개수 구하기	4점
<u>총</u> 점	10점

• 112~115쪽 •

Ⅳ 일차함수

01 3개 **02** (4) **03** (-4, -2) **04** (-4, -2)

05 $-\frac{5}{6}$

06 - 8

07 ②

08 (1)

09 6

... ①

... 🚯

10 -2

11 ① **15** -8

12 x=2**16** -11

13 2 **17** 3 cm **14** (5)

18 2600 m **19** 3 **20** $\frac{1}{4} < a < 2$

21 30분

🔼 서술형 문제

22 $\left(\frac{1}{3}, \frac{1}{3}\right)$ **23** (-4, 12)

 $\bigcirc 1 \quad \neg \quad y = 3x$

 \cup . 예 x=1일 때, y의 값은 없으므로 함수가 아니다.

 \Box . 자연수 x보다 큰 자연수는 무수히 많으므로 함수가 아니다.

 $\exists y = \frac{8}{x}$

 \Box , y=4x

- **02** f(2) = -1에서 -1 = 2a + 3 $\therefore a = -2$ f(x) = -2x + 3이므로f(-1) = 5, f(1) = 1f(-1)-f(1)=5-1=4
- **03** y=3x+10에 x=2a, y=a-5를 대입하면 a-5=6a+10-5a=15 $\therefore a=-3$ y=3x+10에 x=b, y=a+1=-2를 대입하면 -2 = 3b + 10 : b = -4따라서 점 B의 좌표는 (-4, -2)이다.
- **04** ① $y = \pi x^2$ ② y = 3x + 200 ③ $y = \frac{300}{x}$ 4 y = -x + 24 $5 y = \frac{100}{x}$

- **05** (y절편)= $-\frac{m}{2}$ = $-\frac{5}{6}$ 이므로 $m=\frac{5}{3}$ (기울기)= $-\frac{3}{5}\times\frac{5}{3}$ =-1 $y=-x-\frac{5}{6}$ 의 x절편은 $-\frac{5}{6}$
- **06** (기울기)= $\frac{f(2)-f(-1)}{2-(-1)}=\frac{3}{2}$ 이고, y절편이 3인 일차함수 y=f(x)의 식은 $y=\frac{3}{2}x+3$ 평행이동한 그래프의 식은 $y=\frac{3}{2}x+3+a$ 이고 점 (4,1)을 지나므로 1=6+3+a $\therefore a=-8$
- **08** y=2(1-2x)=-4x+2이므로 a=-4따라서 y=-4x-6의 그래프가 두 점 (b, 2), (3, c)를 지 난다. 2=-4b-6에서 4b=-8 ∴ b=-2c=-12-6=-18

 $\therefore a+b+c=-4+(-2)+(-18)=-24$

- **10** 두 점 A, B를 지나는 직선의 기울기는 $\frac{1-3}{-2-1} = \frac{2}{3}$ 그런데 $\overline{AB}/\!\!/ \overline{CD}$ 이므로 두 점 C, D를 지나는 직선의 기울기도 $\frac{2}{3}$ $\therefore a = \frac{2}{3}$ $y = \frac{2}{3}x + b$ 는 점 C(3, -1)을 지나므로 -1 = 2 + b $\therefore b = -3$ 따라서 ab = -2
- **11** ax-by+c=0에서 $y=\frac{a}{b}x+\frac{c}{b}$ 이고 $(기울기)<0, \ (y절편)<0$ 이므로 $\frac{a}{b}<0, \ \frac{c}{b}<0$ 즉, a와 b의 부호는 다르고 b와 c의 부호가 다르므로 a와 c의

부호는 같다. 한편, cx+ay-b=0에서 $y=-\frac{c}{a}x+\frac{b}{a}$ 이고 $-\frac{c}{a}<0, \frac{b}{a}<0$ 이므로 (기울기)<0, (y절편)<0 따라서 일차방정식 cx+ay-b=0의 그래프는 제1사분면을 지나지 않는다.

- **12** $\begin{cases} 3x-y=1 \\ 4x-3y=-7 \end{cases}$ 을 풀면 x=2, y=5 x축에 수직인 직선은 x=k(k는 상수)의 꼴이므로 x=2
- **13** (기울기)= $\frac{-5-5}{2-(-3)}$ =-2 $y=-\frac{1}{2}x+4$ 의 그래프와 y절편이 같으므로 (y절편)=4
 ∴ y=-2x+4의 x절편은 2이다.
- 14 l: y=2x+6 m: y=-x+3 y=2x+6, y=-x+3을 연립하여 풀면 x=-1, y=4이므로 P(-1, 4)∴ △PAB= $\frac{1}{2} \times 6 \times 4 = 12$

15
$$\begin{cases} y = ax + 4 & \cdots & \bigcirc \\ y = -4x + 1 & \cdots & \bigcirc \\ y = 3x - 6 & \cdots & \bigcirc \end{cases}$$

삼각형이 만들어지지 않으려면

- (i) \bigcirc \bigcirc \bigcirc 그래프가 서로 평행한 경우 a=-4
- (ii) \bigcirc ©의 그래프가 서로 평행한 경우 a=3
- (iii) ①, ①, ⓒ의 그래프가 한 점에서 만나는 경우
 - ©, ©의 해 x=1, y=-3을 = 에 대입하면 -3=a+4 $\therefore a=-7$

따라서 (i), (ii), (iii)에서 -4+3+(-7)=-8

- **16** $\begin{cases} x+2y-10=0 \\ 3x-y-2=0 \end{cases}$ 을 풀면 x=2, y=4 x=2, y=4를 5x+ay+1=0에 대입하면 10+4a+1=0 $\therefore a=-\frac{11}{4}$ $\therefore 4a=-11$
- **17** x와 y 사이의 관계식은 $y=5x(0< x \le 8)$ y=5x에서 y=15일 때의 x의 값은 3이므로 $\overline{\mathrm{BP}}=3(\mathrm{cm})$ 이다.
- **18** 지면으로부터 100 m씩 높아질 때마다 기온은 0.5 ℃씩 내려

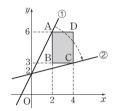
가므로 1 m씩 높아질 때마다 기온은 0.005 °C씩 내려간다. 지면으로부터 높이가 x m인 곳의 기온을 y °C라 하면 x와 y 사이의 관계식은 y=16-0.005x y=3을 대입하면 3=16-0.005x $\therefore x=2600$ 따라서 기온이 3 °C인 곳은 지면으로부터 2600 m의 높이에 있는 곳이다.

19 기울기와 y절편이 모두 같아야 하므로

$$2a+b=a-3b$$
 ... \bigcirc , $\frac{3}{4}a-b=\frac{16-a}{3}$... \bigcirc

 \bigcirc , \bigcirc 을 연립하여 풀면 a=4, b=-1 $\therefore a+b=3$

20 y=ax+2의 그래프가 사각형 ABCD와 두 점에서 만나려면 두 직선 ①, ② 사이에 있어야 하므로 y=ax+2에 x=2, y=6을 대입하면



6=2a+2 $\therefore a=2$

y=ax+2에 x=4, y=3을 대입하면

$$3=4a+2$$
 $\therefore a=\frac{1}{4}$

$$\therefore \frac{1}{4} < a < 2$$

- 21 x분 후의 수면의 높이를 y cm라 하자.
 5분 동안 물이 빠진 후의 수면의 높이는
 120-90=30(cm)가 줄어들었으므로
 1분 동안 물이 빠진 후의 수면의 높이는 6 cm씩 줄어든다.
 이때 처음의 수면의 높이는 120+10×6=180(cm)
 따라서 x, y 사이의 관계식은 y=180-6x
 y=0을 대입하면 0=180-6x, 6x=180 ∴ x=30
 따라서 수영장의 물이 다 빠져나갈 때까지 걸리는 시간은
 30분이다.
- 22 y=-5x+1의 그래프가 점 (a,-a)를 지나므로 $-a=-5a+1, \ 4a=1$ $\therefore a=\frac{1}{4}$ \cdots ① 평행이동한 그래프의 식은 y=-5x+1+1=-5x+2 \cdots ② y=-5x+2가 점 (b,b)를 지난다고 하면 $b=-5b+2, \ 6b=2$ $\therefore b=\frac{1}{3}$ 따라서 x좌표와 y좌표가 서로 같은 점의 좌표는 $\left(\frac{1}{3},\frac{1}{3}\right)$ 이다.

채점 요소	배점
❶ a의 값 구하기	3점
② 평행이동한 그래프의 식 구하기	2점
③ 조건을 만족시키는 점의 좌표 구하기	3점
총점	8점

$$y = -x + 8$$
 ··· 2

점 P의 y좌표를 b라 할 때

(삼각형 PBC의 넓이)= $\frac{1}{2} \times 6 \times b = 3b$

(사각형 ABCD의 넓이)=6×6=36

3b=36에서 b=12

따라서 y=-x+8에 y=12를 대입하면 12=-x+8에서 x=-4이므로 점 P의 좌표는 (-4,12)이다. ... ③

채점 요소	배점
❶ 사각형 ABCD의 한 변의 길이 구하기	1점
● 두 점 A, C를 지나는 직선의 방정식 구하기	3점
❸ 점 P의 좌표 구하기	4점
총점	8점